
Detecting Web Robots Using Passive Request Headers

Farhan Jiva
University of Georgia

jiva@cs.uga.edu

Abstract

Web robots are computer programs that au-
tonomously traverse the World Wide Web via its
hyperlink structure. The purposes of these web
robots range from beneficial, such as performing
indexing operations for search engines, to mali-
cious, such as harvesting email addresses for spam
purposes, performing distributed denial-of-service
attacks, casting automatic votes, and performing
click-fraud. Several reasons exist for the need to
identify web robots and distinguish them from
legitimate users. Firstly, many e-commerce web-
sites can be adversely affected by unauthorized
web robots which gather business intelligence
from their website. Secondly, web robots often
consume a considerable amount network bandwidth
which can affect legitimate users. Finally, it is
rather difficult to perform clickstream analysis
effectively on sessions created by web robots.
Conventional methods for detecting web robots
often include relying on IP address and user-agent
string information contained with an HTTP request
header to perform identification. While these
methods can be applicable to some extent, they
may not be sufficient to detect those web robots
which are stealthy (i.e. arriving from a new IP
address and explicitly forging the user-agent string).

In this paper, we perform classification of known
web robots against web browsers using a subset
of passive HTTP request headers and achieve a
classification accuracy of 99% with very low false
positives and false negatives consistently over a
variety of classification techniques.

1 Introduction

Web robots are automated scripts or agents which
perform a specific task without the need for a
continuous human operator. Because of the exces-
sive growth of the World Wide Web, web robots
have become indispensable tools for performing
a variety tasks, such as crawling web sites for
indexing search engines to the malicious variety,
which include harvesting intelligence to performing
other malicious acts. Unfortunately, many of these
web robots can cause some level of hindrance to
websites. Many websites operate with restrictions
on the amount of network bandwidth it is allowed
to consume in a certain time frame. Violations
to this restriction often cause websites to either
go off-line or incur additional inflated costs as
a penalty. Because many web robots are highly
automated, they can consume a vast quantity of
this limited network bandwidth in a short amount
of time. This causes severe interference for the
legitimate users of the website. Additionally, many
web robots can adversely affect a website’s ability
to perform clickstream analysis. Clickstream
analysis is the recording of what a user clicks on
while visiting a web site which is then used for
web activity analysis, software testing, and market
research. Because sessions related to web robot
activity are autonomously generated by a computer
program, it contributes a significant amount of
noise with respect to this type of analysis. As a
final example, many web robots are deployed by
business organizations to collect email addresses
and online resumes, monitor product prices of



competitors, and retrieve other information related
to competing business organizations.

In many of the situations described, it is often
desirable to identify web robots and differentiate
them from legitimate users. Current heuristic ap-
proaches include examining web server log files for
IP address information and the user-agent string1.
In this paper, we use an approach which does not
rely on IP address or user-agent string information.
Instead, it involves classification of known web bots
against web browsers using a subset of information
contained within the HTTP request header.

The rest of the paper is laid out as follows:

• In Section 2 we discuss some related work.

• In Section 3 we discuss some background in-
formation.

• Section 4 covers our evaluation, along with our
experimental setup and experimental results.

• In Section 5, we discuss our conclusions.

2 Related Work

Several methods exist in the realm of web robot
detection. In [3],Tan et al. use behavioral patterns
of web robots and humans to build classification
models with features based on time-related infor-
mation for each session. In their study, they were
able classify web robots with 90% accuracy after
examining at least 4 requests within any given
session.

In [1], Park et al. use a more active approach
of identifying web robots versus web browsers by
interrogating the web-client for tell-tale signs. They
use two main methods in their approach. The first
method is to detect keyboard and mouse activity in
the web-client and classify the web-client as a web
browser if such activity is detected. The second
method is to embed invisible links in the web-page
with the intuition that human users should not click
on them because they cannot see it, opposed to a
web robot which follows every link blindly. Using
this approach, they were able to detect 95% of
humans after examining at least 57 requests with

less than a 2.4% false positive rate.
Finally, in [2], Stassopoulou et al. use a proba-

bilistic reasoning approach for overcoming the web
robot detection problem by using Bayesian-network
classifiers. They use a number of features including
number of clicks in a given time frame, timing
information between clicks, whether the web-client
accessed images or other non-HTML resources,
access torobots.txt, and number of error
responses to achieve an 85% to 91.4% classification
accuracy amongst a variety of datasets with preci-
sion and recall consistently reaching above 95%.

3 Background

The Hypertext Transfer Protocol (HTTP) is an
application-level networking protocol which is the
basis for data communication for the World Wide
Web. This communication takes place between two
nodes, the web-server and the web-client. The pro-
tocol itself is presented in the form of an HTTP
response/request between the web-server and the
web-client respectively. Whenever a web-client
needs to access a resource on a web-server, it is-
sues an HTTP request to the web-server. Contained
within this HTTP request is a variety of attribute-
value pairings which provide the web-server with
information such as which HTTP protocol version it
is using, which media types the web-client can ac-
cept, which languages and encodings the web-client
is able to use, information about how long to keep
the connection open, the user-agent string, amongst
others.

Figures 1 and 2 display examples of passive re-
quest headers of web browsers and web robots, re-
spectively.

Figure 1: Example of a passive request header from
a web browser
GET /index.php HTTP/1.1
Host: x.tow.ly
User-Agent: Apple Mac OS X v10.6.5
CoreMedia v1.0.0.10H574
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

2



Figure 2: Example of a passive request header from
a web robot
GET /robots.txt HTTP/1.1
Cache-Control: no-cache
Connection: close
Pragma: no-cache
Accept: */*
Accept-Encoding: deflate
From: bingbot(at)microsoft.com
Host: columbia.cs.uga.edu
User-Agent:Mozilla/5.0 (compatible;
bingbot/2.0; +http

We use the termpassive to describe the method
by which this HTTP request is obtained. Passive
methods of data collection means that no querying
was done to the web-client to retrieve this HTTP
request information. This is opposed toactive
methods of data collection, which require some
amount of interrogation to the web-client to retrieve
information.

4 Evaluation

In the following section, we will discuss our dataset
as well as the types of classifiers used and classifi-
cation parameters used.

4.1 Dataset

Our dataset consists of 257,114 passive HTTP
request header instances, with 190,697 instances
being from web browsers and 66,417 instances
being from known web robots. The collection
process of this dataset spans the length of over one
year and was obtained from the web-server running
the free image-hosting servicehttp://tow.ly.

Dataset labeling. We took certain steps for
labeling our data.

• Web robot labeling: We used
the web robot database located at
http://www.robotstxt.org/. Using
this database, we obtainedAS2 information
related to each IP address and labeled those
instances whose IP address fell within the
range of known IP addresses that performed
web bot activities.

• Web browser labeling: We set a unique
cookie value for each web-clients which ac-
cessed our data-collecting web-server. For
each returning web-client, we check to see if
it has any cookies stored. If it does, and if the
unique cookie value matches one that was pre-
viously set by us, we label the instance as a
web browser. The intuition is that since most
web robots do not store cookie information
and web browsers will store cookie informa-
tion, the web-clients seen with a known cookie
value are web browsers.

Preprocessing the dataset.Recall that an HTTP
request header contains attribute-value pairings
with information about the web-client. Some
of these attribute-value pairings contain values
that, if used during classification, would result in
misclassification or would receive a high value
for information gain. Some examples of attribute-
values which were removed are: pairings which
contained IP address information, date information,
cookie information, referrer information, hostname
information, and user-agent string information.
The main reason for removing the user-agent
information is because it is easily forged, and
using its value during classification may cause
misclassification.

Initial selection of attributes. Because it is
the case that some attribute-value pairings exist
for only a small subset of web-clients, we initially
choose only those attributes which have values for
at least 100 instances. Out of the 145 total attributes
in the dataset, 18 of these attributes were selected
based on frequency. These attributes are described
in the following table.

3



Header attribute Description
if-none-match Allows a 304 Not Modified to be re-

turned if content is unchanged.
version The version of an HTTP message.
accept Content-Types that are acceptable.
accept-language Acceptable languages for response.
accept-encoding Acceptable encodings.
accept-charset Character sets that are acceptable.
keep-alive Contains timeout information about

persistent connections.
connection Allows the sender to specify options

that are desired for that particular
connection.

content-type The mime type of the body of the re-
quest.

pragma Implementation-specific headers that
may have various effects anywhere
along the request-response chain.

cache-control Used to specify directives that MUST
be obeyed by all caching mechanisms
along the request/response chain.

x-bluecoat-via Client is behind a BlueCoat proxy.
via Informs the server of proxies through

which the request was sent.
x-wap-profile A reference to the user-agent profile.
ua-cpu CPU architecture.
expect Used to indicate that particular server

behaviors are required by the client.
te The form of encoding used to safely

transfer the entity to the client.
content-transfer-
encoding

The form of encoding used to safely
transfer the entity to the client.

Attribute-value representation. Each of the
attribute-value pairings were converted to lowercase
(to avoid possible misclassification). Furthermore,
each possible value over the set of attributes was
then mapped to an integer value.3 We assigned
a specialnull value (mapped to its own integer
value) for those attributes which had missing
attributes.

4.2 Classification methods and parameters

Four types of supervised learning methods were
chosen to perform classification for this study. In
the following section we describe the different
classifiers and the parameters under which they
operate. For all of the experiments performed, we
use theWeka software library.4 Given the relatively
large size of the dataset we used, we dedicate 66%
of the entire dataset for training purposes, and the

remaining 34% for testing.

Decision tree. Decision tree learning is a method
which is commonly used in machine learning and
data mining. Its goal is to create a model that
predicts the value of a target variable based on
several input variables. For this study, we use the
J48 classifier inWeka. We use a confidence factor
of 0.25 used for pruning, and at least 2 instances
per leaf.

Naive Bayes. A Naive Bayes classifier is a
simple probabilistic classifier based on applying
Bayes’ theorem with strong independence assump-
tions.

k-nearest neighbor. The k-nearest neighbor
algorithm is a method for classifying objects based
on closest training examples in the feature space.
For this study, we use one-nearest neighbor which
uses a linear nearest neighbor search algorithm
based on the Euclidean distance metric.

Support vector machines. Support Vector
Machines perform classification by constructing an
N-dimensional hyperplane that optimally separates
the data into two categories. For this study, we use
the LibSVM5 plug-in for Weka. We use a linear
kernel type in the interest of time.

Stacking. Stacking is a type of ensemble
learning technique in which multiple classifiers
are combined with the intuition that together
they will provide better results than only a single
type of classifier. For this study, we combine 3
different classifiers, (decision trees, naive Bayes,
and k-nearest neighbors) and use a decision tree as
the meta-learner. We decide to leave out support
vector machines in the interest of time.

Feature selection. Feature selection is the
technique of selecting a subset of relevant features
for building robust learning models. In this study,
we apply a feature selection technique on the 18
total attributes and then perform classification on
a subset of attributes to observe any increase in
accuracy.

4



4.3 Experimental Results

We present our classification results in the follow-
ing section.

4.3.1 Initial classification results

In this subsection, we present the classification
results obtained from using the 18 pre-selected
attributes over each of the classifiers.

Decision tree. The following table and subse-
quent confusion matrix describes our classification
results using a decision tree.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.9828% 0.0172% 0.0003 1 1

a b ← classified as
22623 6 a = 1

9 64781 b = 0

Using decision tree learning, we were able to reach
a 99.98% classification accuracy. As we can see
from the confusion matrix, we were also able to
achieve a very low number for false positives and
false negatives.

Naive Bayes. We describe our results of the
naive Bayes classifier in the following table and
confusion matrix.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.8845% 0.1155% 0.0012 0.999 0.999

a b ← classified as
22629 0 a = 1
101 64689 b = 0

Using a naive Bayes classifier, we were able to
achieve a 99.88% classification accuracy with a
very low mean absolute error of 0.0012. Compared
with our decision tree classifier, the naive Bayes
classifier produced a slightly higher number of
false negatives, however with the number of false

positives being lower.

k-nearest neighbor. In the following table
and confusion matrix, we show our results for the
k-nearest neighbor classifier.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.9806% 0.0194% 0.0003 1 1

a b ← classified as
22623 6 a = 1

11 64779 b = 0

Similar to the decision tree learner, we were able to
exceed a 99% classification accuracy with very low
false positives and false negatives using a k-nearest
neighbor approach.

Support vector machines. We describe the
classification results and related confusion matrix
for our support vector machine classifier.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.9554% 0.0446% 0.0004 1 1

a b ← classified as
22629 0 a = 1

39 64751 b = 0

Similar to the other classification techniques,
we received a very high value for classification
accuracy at 99.9554%. Although the classification
accuracy was nearly that of what was received for
decision trees, we can see that the number of false
negatives was slightly higher.

4.3.2 Ensemble classification results

In this next subsection, we present our results ob-
tained from the ensemble learning technique, stack-
ing. Recall that we combine 3 different classifiers,
(decision trees, naive Bayes, and k-nearest neigh-
bors) and use a decision tree as the meta-learner. We
decided to leave out support vector machines in the
interest of time. The following includes results for
classification and the related confusion matrix.

5



Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.9142% 0.0858% 0.001 0.999 0.999

a b ← classified as
22564 65 a = 1

10 64780 b = 0

As with our prior results, we see a very high
value for classification accuracy at 99.9142% with
very low numbers of false positives and false
negatives. We find that in our domain, stacking
did not produce a significantly higher accuracy,
and is comparably to using any of the classifiers
independently.

4.3.3 Feature selection classification results

In our final round of testing, we present the effect
that feature selection had on classification accuracy.

Selected features. For our attribute evaluator,
we use a method which evaluates the worth of a
subset of attributes by considering the individual
predictive ability of each feature along with the
degree of redundancy between them. We use a best
first method which searches the space of attribute
subsets by greedy hillclimbing augmented with a
backtracking facility. The results of feature selec-
tion show that the attributesconnection and
content-type are the most effective attributes
to examine in order to make a successful classi-
fication. We will now describe our classification
results obtained by using these two attributes over
the classifiers.

Decision tree. The following table and confu-
sion matrix show our results of classification using
a decision tree over the attributes selected from
feature selection.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.897% 0.103% 0.0021 0.999 0.999

a b ← classified as
22629 0 a = 1

90 64700 b = 0

We observe that by using these two selected at-
tributes, classification accuracy remains over 99%.
We also observe that the number of false positives
has dropped to 0, with the number of false negatives
increasing only slightly.

Naive Bayes. We display the results obtained
from the naive Bayes classifier using the selected
attributes.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.897% 0.103% 0.0012 0.999 0.999

a b ← classified as
22629 0 a = 1

90 64700 b = 0

We observe that our results are nearly identical
to using the decision tree classifier, with the only
change being to the mean absolute error.

k-nearest neighbor. The following table and
confusion matrix describe the results obtained from
a k-nearest neighbor approach using the selected
attributes.

Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.897% 0.103% 0.002 0.999 0.999

a b ← classified as
22629 0 a = 1

90 64700 b = 0

We note once again that the results from using a
k-nearest neighbor classifier is almost exactly the
same as using the decision tree or naive Bayes
classifier, with the only difference being the the
mean absolute error.

Support vector machines. Finally, we de-
scribe our results for the selected attributes on our
support vector machine classifier.

6



Correctly
classified

Incorrectly
classified

Mean
absolute
error

Precision Recall

99.8948% 0.1052% 0.0011 0.999 0.999

a b ← classified as
22627 2 a = 1

90 64700 b = 0

We observe that unlike the previous three classifiers,
the results for support vector machine are different
but insignificant. The resulting classification accu-
racy remains high with the number of false positives
and false negatives remaining relatively low.

5 Conclusions

Throughout the course of this study, we find that
we can detect and classify web robots against web
browsers with above 99% accuracy using infor-
mation from an HTTP request header. We find
that no matter which classification technique is
used and whether or not ensemble learning is per-
formed, we receive an exceedingly high classifica-
tion accuracy with a very low number of false pos-
itives and false negatives. Furthermore, we learned
that by performing feature selection over the set
of attributes, that the attributesconnection and
content-type are the most effective attributes
to examine in order to make a successful classifica-
tion.

References

[1] K. Park, V. S. Pai, K.-W. Lee, and S. Calo.Se-
curing Web service by automatic robot detec-
tion. In USENIX Technical Conference, June
2006.

[2] Athena Stassopoulou , Marios D. Dikaiakos.
Web robot detection: A probabilistic reason-
ing approach. Computer Networks: The Inter-
national Journal of Computer and Telecommu-
nications Networking, February, 2009

[3] Tan, P., V. Kumar.Discovery of Web robot ses-
sions based on their navigational patterns. Data
Mining and Knowledge Discovery, 6, 935, 2002

Notes

1http://awstats.sourceforge.net/
2Autonomous System (AS) is a collection of connected In-

ternet Protocol (IP) routing prefixes under the control of one
or more network operators that presents a common, clearly de-
fined routing policy to the Internet.

3This step was taken because the WEKA package does not
classify on string attributes. Each attribute was then selected
to be ofnominal type in WEKA, so that each value will be
represented as a class instead of numeric.

4Weka is a collection of machine learning algorithms for
data mining tasks. (http://www.cs.waikato.ac.nz/ ml/weka/)

5http://www.csie.ntu.edu.tw/ cjlin/libsvm/

7


