
Performance Evaluation of Tcpdump

Farhan Jiva
University of Georgia

Abstract

With the onset of high-speed networks, using
tcpdump in a reliable fashion can become prob-
lematic when facing the poor performance of mod-
ern operating systems. Because of this limitation,
the amount of packet loss a user is willing to face
is an important factor when choosing an operating
system for a specific task. In this paper, we evaluate
the performance of tcpdump on five modern operat-
ing systems.

1 Introduction

The reliable usage oftcpdump as a network an-
alyzing/debugging/monitoring tool is arguably a
non-trivial task. With the onset of high-speed net-
works, usingtcpdump in a reliable fashion can
become problematic when facing the poor perfor-
mance of modern operating systems. It is because
of this limitation that the amount of packet loss be-
comes an inevitable factor when choosing an oper-
ating system for a specific task. For example, a re-
searcher who needs to extract binary executable files
from a live network interface will require there to
be zero packet loss intcpdump when choosing an
operating system (because the loss of even a single
packet can be severely detrimental to his work).

In this paper, we provide a performance eval-
uation of tcpdump on five, popular, out-of-the-
box installations of modern operating systems. The
operating systems we evaluate are Ubuntu Server
10.10, Debian 5.0, FreeBSD 8.1, Fedora 14, and
Windows 7. In performing the evaluation, we have
found that tcpdump on Ubuntu Server and Debian

performed relatively similar with respect to packet
loss. FreeBSD performed the worst out of the op-
erating systems tested, while Windows usually dis-
plays seemingly random spikes of packet loss. For
each of the datasets we tested, we found that Fedora
performs the best. The rest of the paper is laid out
as follows:

• In Section 2 we discuss some related work.

• Section 3 covers our evaluation, along with our
experimental setup and experimental results.

• In Section 4, we discuss our conclusions.

2 Related Work

One approach to increasing the performance of
packet capturing is explained by Deri et al. [1] In
their paper, they introduce a new type of socket
(PF RING) based on circular buffers which is opti-
mized for packet capturing. They show that by mak-
ing certain modifications to the Linux kernel, they
were able to decrease packet loss substantially, even
on commodity hardware. Whereas Deri et al. pro-
vide insight on methods for increasing the perfor-
mance for packet capturing, the work presented in
this paper provides only a survey of how modern op-
erating systems stand-up to packet loss, and makes
no attempt to increase or decrease performance.

3 Evaluation

3.1 Experimental Setup

In the following section, we will describe our
experimental setup. In addition, we will discuss the
datasets that were used for the evaluation, as well
as provide some statistics about them.

Testing platform. To carry out our evalua-
tion, we chose a variety of operating systems.
Included were Ubuntu Server 10.10, Debian 5.0,
Fedora 14, FreeBSD 8.1, and Windows 7. Each
operating system was installed on partitioned
hard disks spanning across two machines. These
machines contained IntelR©CoreTM i7 processors
(2.80Ghz) and contained 8GB of DDR3 memory.
Each also had a 1 terabyte SATA hard disk running
at 7,200 RPMs. After the operating systems were
installed, no patches or updates were performed.

Datasets. For our evaluation, we used a total
of 4 datasets. These datasets were in the form
of packet-capture (pcap) files, each containing a
different type of activity that a user would normally
perform on the Internet. Each dataset was generated
by us and was captured usingtcpdump:

• HTTP dataset. This dataset contained a web
browsing session. It contained mainly HTML
and image content.

• Flash dataset. This dataset strictly contained
flash content. The content was gathered while
browsing Youtube and Trance.fm.

• Skype dataset. This dataset contained Skype
Voice-over-IP traffic.

• Mixed dataset. This dataset was a combi-
nation of the above three datasets. The pro-
grammergecap1 was used to combine these
datasets.

Figure 1 displays the breakdown of TCP and
UDP packets for each of the dataset. Most packets
in the HTTP and Flash dataset contained TCP pack-
ets, whereas the Skype dataset consisted almost
entirely of UDP packets. Much of the UDP packets
in the HTTP dataset were related to DNS queries.

HTTP Flash Skype Mixed

Dataset

P
er

ce
nt

0

20

40

60

80

100

TCP
UDP
Other

Figure 1: Breakdown of UDP and TCP packets for
each dataset

About 75% of the Mixed dataset were made up
of TCP packets while the other 25% percent were
made up of UDP packets.

Distribution of packet lengths. To get a bet-
ter idea of the frequency of packet lengths in each
dataset, we provide frequency distribution graphs.
Note that each of these frequency distribution
graphs is binned at every 100th interval. Figures
2 and 3 show the frequency distribution for the
HTTP and Flash dataset, respectively. As shown in
these figures, these two datasets follow a similar
distribution pattern with respect to UDP and TCP
packets. In the TCP distribution, it can be seen that
for both of these datasets, the packet lengths 1518
bytes (maximum length of an Ethernet frame) and
66 bytes occur most frequently.

Figures 4 and 5 show the frequency distribu-
tion for the Skype and Mixed dataset, respectively.
As mentioned earlier, the Skype dataset is made up
almost entirely of UDP packets. This is because
Skype’s protocol is based on UDP. In this dataset,
UDP packets of length 1429 bytes occurred most
frequently. The maximum UDP packet lengths
for the Skype dataset are noticeably larger than
the ones seen in HTTP and Flash dataset. These
packets likely contain the voice data. It can
also be seen from this distribution that there is
a frequency spike in the 0-200 byte range. It is
speculated that Skype’s control traffic has packet

2

UDP packets in HTTP dataset

Packet length

F
re

qu
en

cy

100 200 300 400 500

0
10

0
30

0
50

0

TCP packets in HTTP dataset

Packet length

F
re

qu
en

cy

0 500 1000 1500

0
20

00
60

00

Figure 2: Frequency distribution of packet lengths
in the HTTP dataset

UDP packets in Flash dataset

Packet length

F
re

qu
en

cy

100 200 300 400

0
20

40
60

TCP packets in Flash dataset

Packet length

F
re

qu
en

cy

0 500 1000 1500

0
20

00
0

60
00

0

Figure 3: Frequency distribution of packet lengths
in the Flash dataset

lengths in this range. As shown in Figure 5,
the frequency distribution of the Mixed dataset is
a combination of the other frequency distributions.

Performance tests. To conduct the perfor-
mance tests ontcpdump, we set up a mirror port
on a Cisco 2950 Gigabit Switch. For each of the
operating systems, we settcpdump2 to listen and
capture3 on this mirror port. On another port, we
usedtcpreplay45 to replay each of the datasets
over the network.tcpreplay can be configured
such that it will replay the pcap file at a given
bitrate. For our evaluation, we used bitrate intervals
of {100Mbps, 200Mbps, ..., 900Mbps, topspeed}.
topspeed is a command-line switch that can be

UDP packets in Skype dataset

Packet length

F
re

qu
en

cy

0 200 400 600 800 1000 1200 1400

0
50

00
15

00
0

TCP packets in Skype dataset

Packet length

F
re

qu
en

cy

0 500 1000 1500

0
50

10
0

15
0

Figure 4: Frequency distribution of packet lengths
in the Skype dataset

UDP packets in Mixed dataset

Packet length

F
re

qu
en

cy

0 200 400 600 800 1000 1200 1400

0
50

00
15

00
0

TCP packets in Mixed dataset

Packet length

F
re

qu
en

cy

0 500 1000 1500

0
20

00
0

60
00

0

Figure 5: Frequency distribution of packet lengths
in the Mixed dataset

set in tcpreplay which tells it to transmit the
pcap file ”as fast as it can.” For each of these bitrate
intervals, we run 10 rounds of tests and gather
the statistics-output fromtcpdump. This output
contains information regarding the number of
dropped packets, the number of packets captured,
and the number of packets received by the filter.
Using this information, we define a formula for the
packet loss ratio (PLR):

PLRi =

NumberOfDroppedPacketsi

NumberOfPacketsReceivedByFilteri

where i is a round from{1-10}. For each 10
rounds of tests for each bitrate interval, we calculate

3

thePLR. From these 10PLRs, we select the median
value along with its corresponding bitrate interval
and use this information to report our results. The
actual setup for this experiment is described as fol-
lows:

• Starttcpreplay on looped-mode at a partic-
ular bitrate interval on one machine.

• Shortly after, starttcpdump(with the -c flag
set to 100000 and -s flag set to 1518)67 on the
second machine which is connected to the mir-
ror port.

• tcpdump is run for 10 rounds at this particu-
lar bitrate interval, saving the captured packets
onto disk.

• At the end of each of these 10 rounds, calculate
thePLR.

• Continue for all of the bitrate intervals.

The following table provides information on the
kernel version,tcpdump version, as well as the
libpcap version for each of the operating sys-
tems.

Operating
System

Kernel Tcpdump
version

Libpcap
version

Ubuntu
Server
10.10

2.6.35-22-
server

4.1.1 1.1.1

Debian
5.0

2.6.26-2-
amd64

3.9.8 0.9.8

Fedora 14 2.6.35.6-
45.fc14.x8664

4.1.1 1.1.1

FreeBSD
8.1

8.1-
RELEASE

4.0.0 1.0.0

Windows
7

N/A 3.9.5* 4.1.2**

*This is the WinDump version. It is based
on tcpdump version 3.9.5
**This is the WinPcap version. It is based
on libpcap version 1.0 branch 10 re10b

Measuring discrepancies in tcpreplay data
transfer rates. During our evaluation, we
learned that the bitrate which is specified through

tcpreplay is not the true bitrate at which it
transfers data. To overcome this discrepancy,
we conducted a small experiment to observe the
differences between specified bitrate speeds in
tcpreplay and actual bitrate speeds.

For this experiment, we measured the discrep-
ancy intcpreplay’s bitrate by usingtcpdump.
This experiment was done using a single network
interface on one of the machines described above.
By using some meta-information thattcpdump
provides (byte size of captured pcap file, time it
took to capture the file), we can use it as a tool
to test the actual speed it took for the capture to
take place. We explain the steps of the experiment
below:

• Starttcpdump on the network interface.

• Starttcpreplay at a specified bitrate on the
same network interface

• Oncetcpreplay is done transmitting, exit
tcpdump

• Using the byte size of the captured pcap file
along with calculating how long the transfer
took to finish, report the calculated bitrate.

A few important things to note with this experi-
ment is that the process of starting and stopping
tcpdump along with startingtcpreplay was
scripted to remove delays caused by human error.
Also, we determined that this method for deter-
mining bitrate was accurate because fortcpdump
to capture packets sent bytcpreplay is just a
matter of copying a buffer from kernel space (and
the rate at which this buffer is copied is negligible).
One last thing to note about this experiment is that
tcpdump saved the captured packets on a ramdisk,
to avoid delays caused by writing to the disk.

For each of the bitrate intervals mentioned
above, we ran this experiment 5 times and averaged
the bitrates inferred fromtcpdump. We also
averaged the bitrates whichtcpreplay reports in
its output. Using these two values along with the
bitrate speed which we specified intcpreplay,
we show the results in Figure 6. As we can see
from this graph,tcpreplay is accurate when

4

the specified bitrate reaches to about 300Mbps.
After this point, the bitrate which is specified is no
longer the true rate at which it transfers at. Another
thing to note, however, is that the bitrate given
in the output oftcpreplay is very close to the
actual bitrate that it sends at. We speculate that
this inconsistency intcpreplay is due to the
overheads involved of it trying to rate-limit itself
when trying to match the specified bitrate.

Bitrate explicitly chosen in Tcpreplay (Mbps)

B
itr

at
e

in
fe

rr
ed

 fr
om

 T
cp

du
m

p
(M

bp
s)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

to
ps

pe
ed

B
itr

at
e

ac
co

rd
in

g
to

 o
ut

pu
t o

f T
cp

re
pl

ay
 (

M
bp

s)

Figure 6: Comparison of bitrates between tcpreplay
and tcpdump

3.2 Experimental Results

In this section, we discuss our findings. Namely,
we will discuss howtcpdump fared on each of
the operating systems we tested for each of the
datasets. It is important to note that the graphs in
this section are based on the bitrate speed which
we specified intcpreplay, and not the actual
bitrate. The true bitrate can be found using Figure 6.

HTTP dataset. In Figure 7, we show our re-
sults for the HTTP dataset. As we can see, all of the
operating systems maintained less than 1% packet
loss until about the 300Mbps mark. After this mark,
we see that Debian, FreeBSD and Ubuntu had a
steadily increasingPLR. Windows encountered
a relatively low PLR, while Fedora’sPLR was
negligible. We can see that attopspeed, nearly
all of the operating systems witnessed a rapid-drop
rate.

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Bitrate Specified in Tcpreplay (Mbps)

P
ac

ke
t L

os
s

R
at

io
 (

P
LR

)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

to
ps

pe
ed

Ubuntu Server
Debian
FreeBSD
Fedora
Windows

Figure 7: Tcpdump packet loss for HTTP traffic

Flash dataset. We can see the results for the
Flash dataset in Figure 8. As we can see from
this graph, Debian, Ubuntu, and Fedora performed
relatively well. Windows had a substantial, seem-
ingly anomalous drop-rate at the 600Mbps interval,
but stabilized for the subsequent bitrate intervals.
FreeBSD maintained a relatively lowPLR until the
300Mbps interval, at which point it encountered a
relatively rapid drop-rate.

0.
00

0.
02

0.
04

0.
06

0.
08

Bitrate Specified in Tcpreplay (Mbps)

P
ac

ke
t L

os
s

R
at

io
 (

P
LR

)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

to
ps

pe
ed

Ubuntu Server
Debian
FreeBSD
Fedora
Windows

Figure 8: Tcpdump packet loss for Flash traffic

Skype dataset. Figure 9 shows the results for
the Skype dataset. As we can see in this figure,
nearly all of the operating systems performed
relatively well until around the 400Mbps interval.
Windows had another drop-rate at around the
200Mbps interval, however, this drop inPLR was

5

not nearly as substantial as it was in the Flash
dataset. Windows remained relatively stabilized
after this initial drop-rate. We can see the Debian
and Ubuntu had a steady increase inPLR, while
FreeBSD had a another relatively rapid increase in
PLR after around the 400Mbps interval.

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Bitrate Specified in Tcpreplay (Mbps)

P
ac

ke
t L

os
s

R
at

io
 (

P
LR

)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

to
ps

pe
ed

Ubuntu Server
Debian
FreeBSD
Fedora
Windows

Figure 9: Tcpdump packet loss for Skype traffic

Mixed dataset. We look to Figure 10 to get a
better idea of how welltcpdump will fare in
the real world on these particular operating sys-
tems. This figure contains the results for the Mixed
dataset. We can see that overall, Debian and Ubuntu
performed relatively similar (most likely due to
Ubuntu being based off of Debian). FreeBSD had a
substantial amount of packet loss starting at around
the 400Mbps interval, while Windows encountered
another spike in drop-rate at around the 700Mbps
mark. Fedora, again, had a near-negligible amount
of packet loss.

4 Conclusions

In this paper, we have presented a performance eval-
uation ontcpdump using 5 popular operating sys-
tems (Ubuntu Server 10.10, Debian 5.0, FreeBSD
8.1, Fedora 14, Windows 7). From our experi-
ments, we found that tcpdump on Ubuntu Server
and Debian performed relatively similarly (likely
because Ubuntu is based off of Debian) with respect
to PLR. We have shown that out of these operating
systems, FreeBSD performs the worst (usually ex-
hibiting substantial packet loss at around 400Mbps),

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Bitrate Specified in Tcpreplay (Mbps)

P
ac

ke
t L

os
s

R
at

io
 (

P
LR

)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

to
ps

pe
ed

Ubuntu Server
Debian
FreeBSD
Fedora
Windows

Figure 10: Tcpdump packet loss for Mixed traffic

while Windows usually displays seemingly random
spikes of packet loss. In our tests we found that for
each of the datasets used, Fedora 14 performed the
best, exhibiting aPLR of around 0 for each of the
tests.

References

[1] Luca Deri, Improving Passive Packet Capture:
Beyond Device Polling. Proceedings of SANE
2004, October 2004.

Notes

1mergecap is available at http://www.wireshark.org/
2Windump was used in-place of tcpdump on Win-

dows. Windump is based on the same library as tcpdump.
(http://www.winpcap.org/windump/)

3The replayed packets were saved as a pcap file on disk
4tcpreplay is an application for replaying pcap files into the

ether (http://tcpreplay.synfin.net/)
5To do the replaying of pcaps, tcpreplay was run on Fedora

14
6We use the-c flag in tcpdump so that our testing process

can be scripted to avoid human delay
7We set the snap-length of the capture to 1518, which is the

maximum length of an Ethernet frame

6

